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Introduction



1.1 A representation of style

An artist’s style is reflected in their artworks, independent from what is depicted

[115]. Two artworks created by the same artist that depict two vastly different scenes

(e.g., a beach scene and a forest scene) both reflect their style. Stylistic characteris-

tics of an artwork can be used by experts, and sometimes even laymen, to identify

the artist that created the artwork. The ability to recognize styles and relate these

to artists is associated with connoisseurship. Hendriks and Hughes defined connois-

seurship as the ability to recognise the artist’s style [44]. Connoisseurship is essential

in the tasks of authentication and restoration of artworks, because both tasks require

detailed knowledge of stylistic characteristics of the artist. Realising connoisseurship in

a computer is the main goal of this thesis. The additional goal of the thesis is to give

a computer the ability to produce artworks in the style of the artist.

To make it possible for a computer to analyse an artwork it has to be digitised, for

instance by means of photography. By photographing the artwork it is converted into

a grid of numerical values (i.e., a digital image), where each grid square represents a

single pixel with a certain colour specified by the numerical value(s). For image anal-

ysis these pixels are considered the raw data, the lowest level of representation. From

a mathematical point of view, an image can be thought of as a point (or vector) in

image-space, a high-dimensional space where each dimension represents the value of

a single pixel. The image-space representation of images may be beneficial for image

analysis. Images of objects and shapes which are similar in their pixels values, tend

to be clustered together in this huge space [113]. The feasibility of image-space repre-

sentations are hampered by their vulnerability to changes in the appearances of im-

ages that do not affect their interpretation. For example, the semantic interpretation

of the picture of a cat sitting on the left side of a couch in Figure 1.1(a), is (nearly)

identical to the interpretation of the horizontally flipped version in Figure 1.1(b), yet

the image-space representations are vastly different. The distance between the image-
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space points representing Figure 1.1(a) and Figure 1.1(b) is very large, despite their

conceptual similarity. The reason is that the individual pixel values (i.e., the dimen-

sions of the image space) are very different for both images. In computer vision this

discrepancy is referred to as the semantic gap, the lack of coincidence between the low-

level information captured by the pixel values and the high-level interpretation by a

human [106].

(a) (b)

Figure 1.1: Picture of a cat, and the same picture horizontally flipped. The image-space representations of
these pictures are vastly different, yet the semantic interpretation of both pictures is the same.

To overcome the semantic gap it is necessary to perform image analysis using higher-

level representations which are abstractions of the raw data, and which describe im-

age features in a manner that is invariant to irrelevant changes in the image [81]. His-

torically, these features have been obtained by extracting the features with an algo-

rithm (i.e., a feature extractor) which was specifically designed by computer vision re-

searchers for a certain task, through a process called feature engineering [6]. This pro-

cess consists of iteratively designing, creating, and testing feature extractors, often by

involving domain experts. Feature engineering has traditionally been the most critical

and labour intensive component in the computer vision pipeline [6]. Some of the ear-

liest works on image analysis used representations obtained by specifically modelling

the colours, shapes, or texture of images [110, 55, 39], later work focused on more com-

plex and holistic representations [20, 6]. Before turning to an outline of representa-

tion learning, what follows is a brief review of five popular feature extractors for image
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analysis: colour, shape, texture, local image features, and bag of visual words.

Colour is commonly represented by means of a histogram, as proposed by Swain

and Ballard [110]. Colour histograms describe the colour globally, and are by design

largely invariant to changes introduced by rotation, translation, and occlusion [31].

These histograms are constructed by quantising the colour values of the individual

pixels of an image, irregardless of the spatial arrangement of the pixels. Randomly

scrambling the position of all the pixels in an image does not change its colour his-

togram. This loss of spatial information is the main drawback of colour histograms

[46], impeding their applicability to tasks that require understanding of the spatial

arrangement of images. For instance, the spatial information that allows us to distin-

guish the French flag from the Dutch flag is not present in colour histograms, making

it impossible to distinguish between these flags based on their colour histograms alone.

Objects in images can be described by their shape, in a manner which is invariant

to transformations (e.g., rotation and scaling). Shape descriptors are either contour-

based or region-based, where contour-based approaches model the boundary of the

shape, and region-based approaches model all the pixels within the shape [132]. Shape

descriptors have been successfully used in work on object recognition [5, 69], where

they were applied to datasets of small and typically simple images, such as the MPEG-

7 Shape database which consist of object silhouettes. A limitation of shape descriptors

is that invariant descriptions are typically only possible for simple shapes, such as ob-

ject silhouettes. Therefore, for complex shapes it becomes necessary to construct mul-

tiple descriptors at varying sizes, positions, and orientations [55], which is slow and

generally infeasible for very large datasets consisting of huge numbers of different ob-

jects and shapes.

Texture features aim to capture the spatial arrangement of intensities or colours.

Texture features are generally divided into structural and statistical features [39, 119].

Structural texture features are best suited for macro-level spatial configurations, such

as brick walls or patterned wallpaper. Structural approaches assume texture consists

of a (semi-)regular pattern and the representations of structural texture describe the
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basic pattern (texel) being repeated and its positioning rules. Statistical texture fea-

tures are best suited for micro-level spatial configurations, such as tissue samples or

paper grain patterns. Statistical approaches model texture by means of sets of statis-

tics extracted, such as gray-level co-occurrences [40]. Spatial filters are widely used

for texture analysis, with Gabor filters being a prominent example of spatial filters

[53, 84]. When applied to images, filters give a numerical response to the presence of

local image characteristics. Gabor filters respond to gratings with a specific spatial fre-

quency and spatial orientation. A Gabor filter bank contains filters of a range of spa-

tial frequencies and orientations. Filter banks have been successfully applied to a wide

variety of image processing tasks, for instance texture classification [84], texture seg-

mentation [53], and object detection [54]. The main disadvantage of texture features,

such as filter banks, is that the range of spatial frequencies and orientations should be

appropriate for the task at hand. Which orientations and frequencies are appropriate

is not always easy to establish.

A number of works have aimed to combine the aforementioned features, such as

the combination of colour and shape [55, 31] or of colour and texture [24]. A particu-

larly successful approach was found by describing images using local image features,

such as Scale-Invariant Feature Transform (SIFT) features [83]. Local image features

aim to describe points of interest (keypoints) of images. Keypoints are image patches

that stand out or contain interesting information. SIFT features describe keypoints by

computing the gradient magnitude and orientation at image sample points and sum-

marising them in a histogram. This allows SIFT features to be largely invariant to

rotation, scale, and affine transformations. Local image features were found to be most

successful in image matching tasks, in which the challenge is to match two images of

the same object or scene from different viewpoints or at different scales [12]. SIFT

is able to match the keypoints of such images, in effect solving the matching task. A

limitation of local image features is that they only describe the keypoints, and do not

characterise the image as a whole.

To overcome the limitations of local image features the bag of visual words (BoV)
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model was developed [20]. In this model local descriptors extracted from multiple im-

ages are clustered to find a limited set of visual words, i.e., the building blocks of im-

ages. Using these visual words, each image can be characterised as a histogram of

occurrences of the visual words. The most successful variants of the BoV model are

Fisher Vectors [92], and vector of locally aggregated descriptors (VLAD) [56]. Fisher

vectors use Gaussian Mixture Models to construct the visual word dictionary, whereas

VLAD uses K-means clustering. Additionally, Fisher vectors encode second-order in-

formation about the features, whereas VLAD does not. The BoV model variants differ

in the way that the features are engineered by (i) how the visual dictionary is defined,

(ii) how local image features are defined, and (iii) what information about features is

stored. Feature engineering is a crucial optimisation procedure for each type of appli-

cation or dataset. The time investment necessary for feature engineering limits the

usefulness for BoV based approaches on less researched domains, such as artwork anal-

ysis, where there are no developed best practices.

An alternative to feature engineering, which has gained immense popularity in the

last decade, is representation learning, an approach that learns to capture the in-

formation that is useful for the task at hand [6]. Specifically, representation learn-

ing has become popular because of an insurgence of deep learning methods, methods

which learn representations by stacking multiple (parameterised) nonlinear transfor-

mations. Most deep learning methods are types of neural networks (e.g., recurrent or

convolutional neural networks), with specific implementations that deal well with the

particularities of the data. Deep learning methods have been remarkably successful on

a wide range of tasks [75, 98]. In this thesis we explore whether these successes can be

generalised to the domain of art investigation. Specifically, we aim to learn representa-

tions of the artist’s style that enable recognition of the style, and image generation in

accordance with the style.

In the remainder of this chapter we will give an overview of the field of image anal-

ysis for art investigation in Section 1.2. Followed by the problem statement and the

accompanying research questions in Section 1.3. In Section 1.4 we give a primer on the

6



methodology used for learning representations in this thesis, i.e., deep learning. We

conclude this chapter in Section 1.5 with an overview of the structure of the thesis.

1.2 Image analysis for art investigation

Building on a rich history of prior successful programmes, NWO launched the Sci-

ence4arts programme in 2012. The objective of the programme was to bring together

conservators, curators, humanities and science researchers to focus on the changes that

artworks and historic objects undergo. Within this programme the Re-assessing Vin-

cent van Gogh (REVIGO) project was funded to study Vincent van Gogh’s use of

colour by means of digital reconstructions, and to potentially derive lessons for the

conservation and interpretation of paintings and drawings of other artists. One aspect

of the REVIGO project, as reported in this thesis is to provide methods for the digital

analysis and rendering of artworks and their partial reconstructions.

The use of computer algorithms in the study of art works is quite new. Specifically,

the characterisation of stylistic features was initiated about a decade ago (see, e.g.,

[64]). In the past years, there is a surge in the digital analysis of artworks [79, 18, 30,

109]. This change is mainly due to the increasing availability of large datasets of digi-

tal representations of cultural heritage (e.g., photographs, X-Ray scans, and 3D scans),

which has made it feasible to use data-hungry image analysis algorithms [58].

Although image analysis research for art investigation has focused on a wide variety

of tasks, four main tasks are identified and discussed based on their popularity and

relevance to learning representations of the artist’s style: (1) Artist attribution, (2)

Style classification, (3) Neural style transfer, and (4) Inpainting.

Artist attribution. For a number of - often famous - artworks, either the creators

are unknown or there is an ongoing debate about the veracity of the attributions. His-

torically, artworks have been attributed to artists by connoisseurs, where the merit

of the attribution depends on their reputation. Although analytical techniques which

investigate the chemical composition of an artwork (e.g., inks or pigments [134]), or

physical properties of the materials (e.g., thread counting and canvas weave matching
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[61, 116]) are commonly used, the attribution often still relies on visual assessments

[58]. Although art experts aim to be objective, some level of subjectivity is impossible

to avoid. However, a growing body of work has emerged which aims to support art ex-

perts by providing analytical tools which perform artist attribution through automatic

visual assessment [58, 47, 112, 79, 118, 1, 85, 109].

Typically, such automated tools have relied on a predefined notion of how style can

be recognised, e.g., by looking at brush strokes [79] or by quantifying material textures

[121]. Despite the promise of these tools, their success has only been shown on small

datasets, consisting of artworks by only a few artists. For larger datasets these prede-

fined notions and associated engineered features, might not cover the breadth of vari-

ation. For example, two artists might be highly similar in material choices and brush

stroke style, but only differ in the themes of their artworks. Therefore, the predefined

notion of style (i.e., engineered features) limits the artists the tool can recognise. Rep-

resentation learning circumvents this limitation, because it does not rely on a prede-

fined notion of style. Instead, it learns the style from the raw image data and associ-

ated labels. For instance, an image of the painting ”The Starry Night” is accompanied

by the label ”Vincent van Gogh”. In Chapters 2 and 3 two studies are presented which

show that representation learning can be used to achieve state of the art artist attribu-

tion performance.

Style classification. Besides recognising the artist (and their style) a number of

works have aimed to recognise the art school or movement (e.g., expressionism, renais-

sance, popart) to which an artwork belongs [102, 66, 67, 97]. Just like artistry, these

are aspects of artworks which are visually recognisable across multiple artworks.

Art movement classification is typically restricted to several dozen art movements,

which might differ considerably in appearance. Although a number of studies [66, 97]

used learnt representations for this task, these representations were obtained by train-

ing on a large dataset of natural images, therefore it is unclear how well these repre-

sentations capture artwork style. The focus of this thesis is on the style of the artist.

Neural style transfer. The seminal work by Gatys et al. [30] demonstrated a
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method for disentangling the representations of the content and the style of an image.

Furthermore, the disentangled parts can be recombined with the content and style

part of arbitrary images, effectively transferring the style from one image onto another.

An example of this so-called neural style transfer is shown in Figure 1.2.

(a) content (b) style (c) content+style

Figure 1.2: Example of neural style transfer. (a) The picture of the Dante building on the Tilburg univer-
sity campus forms the content. (b) The artwork ‘Landscape at Twilight’ by Vincent van Gogh provides the
style. (c) The combination of the content and the style yields the Dante building as a Van Gogh painting.

A key aspect of neural style transfer is that “style” is defined on the basis of a sin-

gle image, i.e., images (b) and (c) in Figure 1.2 are in the style of ‘Landscape at Twi-

light’, rather than in the style of Vincent van Gogh. For this thesis we define style as

a property which goes beyond a single artwork, and one that is present in all of the

works by the artist. Therefore, our definition and the definition used for style transfer

[30] do not align. Nonetheless, what makes neural style transfer so exciting is that it

makes visual what style is, by generating images with the chosen style. To explore this

further in a manner matching our definition of style, we present a study in Chapter 4

where we aim to colour greyscale paintings in a manner consistent with the artist’s

style.

Inpainting. Repairing damaged parts of artworks through retouching or inpaint-

ing is common practice for conservators and restorers. Yet, due to the potential of

changing the interpretation and appearance of the artwork, restorers often have to

show restraint. As a consequence, smaller progressive changes (e.g., discolourations

and cracking) might go untreated. Specifically for cracks, a reason to not remove them

is because they are accidental features of paintings [13], they provide a record of the

deterioration of paintings [19].
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Nonetheless to make it possible to view the appearance of a painting without cracks,

a number of works have developed algorithms which perform digital inpainting of

cracks [32, 107, 18]. Additionally, a number of works on inpainting have shown it is

possible to inpaint regions with a spatial extent that is much larger than that of cracks

[91, 49]. Inpainting larger regions requires understanding the effective modelling of the

painting style of the artist and the extrapolation of the context surrounding the region.

Representation learning seems to be well-suited to meet this requirement. In Chap-

ter 5 we investigate inpainting of large regions in paintings and natural images using

learnt representations.

1.3 Problem statement

Despite the rich computer vision history of engineering task-specific features, recent

empirical results have shown that learning representations is a much more promising

avenue. Moreover, due to the inherent difficulty in defining the artist’s style we opt for

a data-driven approach, where the data dictates what characterises the artist’s style.

Specifically, we focus on representing the artist’s style in a manner that enables the

digital analysis of artworks for a wide array of art investigation tasks. To this end we

formulate the following problem statement (PS).

PS: To what extent can the artist’s style be represented in a digital manner?

To address the problem statement we identity two requirements for a useful repre-

sentation of style: (1) the artist’s style can be recognised across multiple artworks, and

(2) the representation can be used to generate novel content that has the stylistic char-

acteristics of the artist. To guide our attempts at answering the problem statement we

rephrase these requirements as the following two research questions.

• Research question 1 (RQ1): Is it possible to learn a representation of the
artist’s style, which can be used to recognise the style of the artist across multi-
ple artworks?
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• Research question 2 (RQ2): Can we generate novel image content in the
style of the artist?

The two main contributions of this thesis are: (1) the development and evaluation

of two techniques enabling the recognition of the artist’s style across artworks, and (2)

the development and evaluation of two new image generation techniques, tailored to

the art domain.

1.4 Representation learning

In this section we provide a brief introduction on representation learning, specifically

convolutional neural networks which are central in this thesis. We hope to facilitate

the reading of the remainder of this thesis by introducing terminology and principles

used throughout the thesis.

Training a classifier or predictor directly on raw data is undesirable as certain trans-

formations of the image (e.g., rotational, scale or luminance changes), that do not al-

ter the interpretation of the data, might greatly change the representation of the raw

data. For instance, for textual data such changes could be word choices, replacing a

word with a synonym should not alter the interpretation, despite the different sym-

bol that is used. Similarly, for speech data, shifting the pitch (uniformly) should not

change the meaning of a sentence spoken (in most languages), yet the numerical rep-

resentation of the raw signal might change greatly. For images, such changes could be

rotations or positional changes, which greatly change the pixels, but do not affect the

interpretation.

A method for overcoming this limitation of raw data is representation learning;

which aims to learn (lower dimensional) representations of the data which capture the

useful information [6]. Specifically, in the last decade most representation learning lit-

erature has used neural networks to learn useful representations.

For image analysis tasks the most commonly used neural networks are convolutional

neural networks (CNNs) [74]. Each neuron in a CNN incorporates a (small) adaptive
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filter which is convolved with the input. Using convolution is beneficial for image anal-

ysis, because it allows the network to recognise patterns independently of their spatial

position. Figure 1.3 illustrates the convolution of a 3×3 filter with a 3×3 region of the

input image yielding a single output value. An incomplete but intuitive understanding

of convolution with a filter can be obtained by likening the filter coefficient to a tem-

plate that is compared with the input values. The output value represents the degree

to which the input contains the pattern represented by the template. In the neural

metaphor, the filter coefficients are the weights of the neurons and the output value is

called the ”activation” of the neuron.

5
4

8

9
1

2

4
6

7Input

-1
0

1

1
1
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-1Filte
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12
Output

Figure 1.3: Illustration of the convolution of a filter at a single location of an input (i.e., image). The filter
coefficients are multiplied element-wise with the input values and summed, yielding the output value 12.

A deep CNN consists of multiple convolutional layers, stacked on top of each other,

where the first layer is applied directly to the input, and subsequent layers are applied

to the preceding layer. The last layer is the output layer that contains the informa-

tion relevant to the task it was trained for (e.g., a class label for classification, a scalar
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value for regression, or an output image for image generation). Typically, a non-linear

transfer function is applied to the neurons in each layer, examples of such transfer

functions are: hyperbolic tangent function (tanh), sigmoid function, and rectified lin-

ear units (ReLU). By stacking layers of non-linear transformations of the input, neural

networks are able to learn increasingly abstract representations of the input.

Moreover, by stacking layers of convolutions (and potentially pooling layers), a

CNN is able to learn transformations of larger regions in the input space (the input

image). The input to a CNN is typically an image with a spatial resolution greater

than spatial dimensions filters of the first layer, which means that this first layer can

only transform small regions in the input. The receptive field of a neuron or filter is

the input region that can affect its output. A CNN applies filters recursively by treat-

ing the outputs of the first layer of filters as inputs for the second layer of filters, and

so forth. As a consequence, the spatial extent of the neurons’ receptive fields grows

with each subsequent layer. Figure 1.4 illustrates this for the recursive application of a

3× 3 filter in the first two layers of a CNN.

(a) (b)

Figure 1.4: Visualisation of the receptive fields of the first two layers of a convolutional neural network. (a)
shows the receptive field of a 3× 3 filter applied directly to the input. (b) shows the 5× 5 receptive field of
the same 3× 3 filter applied to the output produced by (a).

In theory, we could expand the receptive field in this manner until it covers the en-

tire input, in practice it is more common to introduce downsampling, to obtain a large

receptive field with fewer layers. Downsampling in CNN is often achieved through
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pooling layers. Pooling layers are inserted between convolutional layers and reduce the

spatial dimension of the layer output by applying a pooling operation to a single depth

slice region in the output. Common pooling operations are max and average pooling.

Figure 1.5 illustrates max and average pooling. A 4 × 4 image is shown on the left

part of the figure. In max pooling, the maximum value of each 2× 2 quarter of the im-

age defines the corresponding output of the pooling layer (top right). In avg pooling,

the average value of each 2× 2 quarter defines the output.

1

0 2

6 4

4 2

1

8

6 0

1 0

1 2

5

6 4

8 5

2.25 2.75

3.75 2

Max

Average

Figure 1.5: Visualisation of max and average Pooling with non-overlapping 2 × 2 filters. On the left the
input region, on the right the output. Above is max pooling, below is average pooling.

By increasing the size of the receptive field, the representations in the successive

layers of a CNN become more abstract and describe a larger spatial region. A common

example to describe the workings of a CNN is to imagine the analysis of a face, where

the initial layers look at low-level features such as edges and contours, and later layers

look at higher-level features such as parts of the face (e.g., eyes, nose, mouth).

The models used in the studies reported on in this thesis are based on variants of

the CNN as outlined above.

1.5 Structure of the thesis

In Chapter 1 we introduce the reader to the topic of the thesis, and we formulate the

problem statement and two research questions. In Chapters 2 to 5 of this thesis we

present four studies which investigate representation learning of the artist’s style on a
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variety of tasks. The four chapters present studies which have been accepted for publi-

cation in peer-reviewed journals, or have been submitted for publication. Specifically,

Chapter 2 has been published in IEEE Signal Processing Magazine, and Chapter 3 has

been published in Pattern Recognition. As a consequence the chapters have been writ-

ten as self-contained studies, and may contain a certain amount of overlap.

Based on the research questions we can identity two parts to this thesis. In the first

part (Chapters 2 and 3) we aim to answer RQ1: “Is it possible to learn a representa-

tion of the artist’s style, which can be used to recognise the style of the artist across

multiple artworks?”. In the second part (Chapters 4 and 5) we focus on RQ2: “Can

we generate novel image content in the style of the artist?”. What follows is a brief de-

scription of each of the remaining chapters of the thesis.

Chapter 2 presents a study on artist attribution, exploring the influence of differ-

ent dataset parameters. In Chapter 3 we extend the artist attribution framework pre-

sented in Chapter 2 to deal with scale variations and scale-specific information. Chap-

ter 4 presents a study on image colourisation in a manner which is consistent with the

artist’s style. In Chapter 5 we present a study on semantic inpainting, reconstructing

large missing parts from natural images and paintings. Finally, Chapter 6 concludes

the thesis, and provides answers to the research questions and problem statement, as

well as directions for future work.
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Toward discovery of the artist’s style

This chapter has been previously published as: N. van Noord, E. Hendriks, & E. Postma (2015). To-

ward discovery of the artist’s style: Learning to recognize artists by their artworks. IEEE Signal Pro-

cessing Magazine vol. 32, no. 4, pp. 46–54, July 2015.



Abstract

Author attribution through the recognition of visual characteristics is a commonly

used approach by art experts. By studying a vast number of artworks, art experts

acquire the ability to recognise the unique characteristics of artists. In this chapter

we present an approach that uses the same principles in order to discover the charac-

teristic features that determine an artist’s touch. By training a Convolutional Neural

Network (PigeoNET) on a large collection of digitised artworks to perform the task

of automatic artist attribution, the network is encouraged to discover artist-specific

visual features. The trained network is shown to be capable of attributing previously

unseen artworks to the actual artists with an accuracy of more than 70%. In addition,

the trained network provides fine-grained information about the artist specific charac-

teristics of spatial regions within the artworks. We demonstrate this ability by means

of a single artwork that combines characteristics of two closely collaborating artists.

PigeoNET generates a visualisation that indicates for each location on the artwork

who is the most likely artist to have contributed to the visual characteristics at that

location. We conclude that PigeoNET represents a fruitful approach for the future of

computer supported examination of artworks.
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2.1 Introduction

Identifying the artist of an artwork is a crucial step in establishing its value

from a cultural, historical, and economic perspective. Typically, the attribution is per-

formed by an experienced art expert with a longstanding reputation and an extensive

knowledge of the features characteristic of the alleged artist and contemporaries.

Art experts acquire their knowledge by studying a vast number of artworks accom-

panied by descriptions of the relevant characteristics (features) [95]. For instance, the

characteristic features of Vincent van Gogh during his later French period include

the outlines painted around objects, complementary colours [8], and rhythmic brush

strokes [79]. As Van Dantzig [115] claimed in the context of his Pictology approach, de-

scribing works by an artist in terms of visual features enables the attribution of works

to artists (see also [82]).

The advent of computers and high-resolution digital reproductions of artworks gave

rise to attempts to partially automate the attribution of artworks [63, 47, 112]. Given

the appropriate visual features, machine learning algorithms may automatically at-

tribute artworks to their artists. As was (and still is) common practice in traditional

machine learning, feature engineering, i.e., finding or defining the appropriate features,

is critical to the success of the task of automatically attributing paintings to the cor-

rect painter. Close cooperation with art historians and conservators has facilitated

the feature engineering for artist attribution, which led to promising results in the au-

tomatic attribution of artworks by van Gogh and his contemporaries [79, 63, 118, 1],

highlighting the value of automatic approaches as a tool for art experts.

Despite the success of feature engineering, these early attempts were hampered by

the difficulty to acquire explicit knowledge about all the features associated with the

artists of artworks. Understandably, the explicit identification of characteristic fea-

tures posed a challenge to art experts, because (as is true for most experts) their ex-

pertise is based on tacit knowledge, which is difficult to verbalise [26]. By adopting a
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method capable of automatically recognising the characteristics that are known to be

important for the task at hand, the tacit knowledge of art experts may be made ex-

plicit [7].

Feature learning is an alternative to feature engineering that learns features directly

from the data [7]. Feature learning is much more data intensive than feature engineer-

ing, because it requires a large number of examples to discover the characteristic fea-

tures. In recent years, feature learning has shown great promise by taking advantage

of deep architectures, machine learning methods inspired by biological neural networks.

A typical example of a deep architecture is a convolutional neural network, which,

when combined with a powerful learning algorithm, is capable of discovering (visual)

features. Convolutional neural networks outperform all existing learning algorithms

on a variety of very challenging image classification tasks [71]. To our knowledge, con-

volutional neural networks have not yet been applied for automated artist attribution.

The objective of this chapter is to present a novel and transparent way of performing

automatic artist attribution of artworks by means of convolutional neural networks.

The question may be raised whether automatic artist attribution is possible at all,

when using visual information only. It has been frequently argued by scholars work-

ing in the art domain that semantic or historical knowledge, as well as technical and

analytical information are pivotal in the attribution of artworks. The feasibility of

image-based automatic artist attribution is supported by biological studies. Pigeons

[122] and honeybees [125] can be successfully trained to discriminate between artists,

with pigeons correctly attributing an art work in 90% of the cases in a binary Monet-

Picasso attribution task. This shows that a visual system without higher cognitive

functions is capable of learning the visual characteristics present in artworks. While

it is unlikely that a perfect result can be achieved without incorporating additional in-

formation, these findings do pave the way for an attribution approach that learns to

recognise visual features from data rather than from prior knowledge.

In this chapter, we present PigeoNET, a convolutional neural network correspond-

ing to the AlexNET architecture described in [71] to which we added a visualisation
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component due to [131]. PigeoNET is applied to an artist attribution task by train-

ing it on artworks. As such, PigeoNET performs a task similar to the pigeons in [122],

by performing artist attribution based solely on visual characteristics. This implies

that, in addition to authorship, PigeoNET may also take visual characteristics into

consideration that relate indirectly to the artist (e.g., the choice of materials or tools

used by the artist) or that are completely unrelated to the artist (e.g., reproduction

characteristics such as lighting and digitization procedure). To ensure that the visual

characteristics on which the task is solved by PigeoNET make sense, human experts

are needed to assess the relevance of the acquired mapping from images of artworks

to artists. Our visualisation method allows for the visual assessment by experts of the

characteristic regions of artworks.

In our artist attribution experiments, we consider three sources of variation in the

training set and assess their effects on attribution performance: (1) heterogeneity ver-

sus homogeneity of classes (types of artworks, e.g., paintings, prints, or drawings), (2)

number of artists, and (3) number of artworks per artist.

After training, the performance of PigeoNET will be assessed in two ways: (1) by

determining how well it attributes previously unseen artworks, and (2) by generating

visualisations that reveal artwork regions characteristic of the artist, or in case of art-

works that are likely created by two or more artists, generating visualisation that re-

veal which regions belong to which artist, and could aid in answering outstanding art

historical questions.

The remainder of the chapter is organised as follows. In Section 2.2 we describe the

PigeoNET model. In Section 2.3 the experimental setup is outlined and the results

of the artist attribution task are presented. In Section 2.4 we explore the features ac-

quired by PigeoNET by visualising authorship for specific artworks. We discuss the

implications of feature learning for the interdisciplinary domain of automatic artist

attribution in Section 2.5. Finally, Section 2.6 concludes by stating that PigeoNET

represents a fruitful approach for the future of computer-supported examination of art-

works, capable of attributing artists to unseen artworks and generating visualisations
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of the authorship per region of an artwork.

2.2 PigeoNET

A convolutional neural network can learn to recognise the visually characteristic fea-

tures of an artist by adapting filters to respond to the presence of these features in

an image [74]. The filters are adapted to respond to a feature by adjusting the pa-

rameters, or weights, of the filters until a suitable configuration is found. The proper

weights for this configuration are obtained by means of a learning algorithm called

back-propagation [76], which requires no prior knowledge, other than the input images

and some label (e.g., the artist who created it). In the case of artist attribution, the

network will learn to recognise features that are regarded as characteristic of a certain

artist, allowing us to discover these characteristics. PigeoNET is a convolutional neu-

ral network designed to learn the characteristics of artists and their artworks, so as to

recognise and identify their authorship.

The filters in a convolutional neural network are grouped into layers, where the first

layer is directly applied to images, and subsequent layers to the responses generated

by previous layers. By stacking layers to create a multilayer architecture the filters can

respond to increasingly complex features with each subsequent layer. The filters in the

initial layers respond to low level visual patterns, akin to Gabor filters [54], whereas

the final layers of filters respond to visual characteristic features specific to artists.

Because convolution is used to apply the filters to an image, or the response of a

previous layer, the layers of filters are referred to as convolutional layers. The advan-

tage of a convolutional layer, over a traditional neural network layer, is that the weights

are shared, allowing the adaptive filters to respond to characteristic features irrespec-

tive of their position or location in the input [76]. In order to learn a mapping from

the filter responses to a certain artist the convolutional layers are, typically, followed

by a number of fully-connected layers which translate the presence and intensity of the

filter responses to a single certainty score per artist. The certainty score for an artist

is high whenever the responses for filters corresponding to that artist are strong, con-

22



versely, the certainty score is low when the filter responses are weak or nonexistent.

Thus, an unseen artwork can be attributed to an artist for whom the certainty score is

the highest.

2.2.1 Visualisation of artist-characteristic regions

While PigeoNET’s attribution of an artwork is based on the entire artwork, regions

containing visual elements characteristic for an artist will be assigned more weight

than others, to achieve a correct attribution [89]. In order to increase our understand-

ing of the attribution performed by PigeoNET, we aim to visualise such artist-characteristic

regions. Several methods have been proposed for visualising trained convolutional

neural networks [131, 104] and other layered algorithms [27]. We adopt the occlu-

sion sensitivity testing method proposed by [131] for obtaining visualisations of artist-

characteristic regions, which can be considered a weakly supervised localisation method.

By systematically occluding a small image region of an artwork, the importance of

the occluded region is determined by observing the change in the certainty score for

the correct artist. When an occluded region is important (or highly characteristic) for

correctly identifying the artist, there will be a significant drop in the certainty score

generated by PigeoNET. Inversely, occluding a region that is atypical for the correct

artist will result in an increase in the certainty score. A region for which occlusion re-

sults in a drop of the certainty score is considered characteristic for the artist under

consideration. This approach to creating visualisations allows us to show the approxi-

mate areas of an artwork which are representative of an artist.

As an illustration, Figure 2.1 depicts The feast of Achelous by Peter Paul Rubens

and Jan Brueghel the Elder. It is an artwork created by two artists; Rubens painted

the persons and Brueghel the scenery [123]. Although there is no single correct artist,

the certainty score for Brueghel would decrease if the scenery were to be occluded,

whereas the certainty score for Rubens would drop if the figures were occluded. Even

when only part of the figures or part of the scenery were to be occluded, we would see

a drop in confidence scores. In a similar vein, when even smaller regions of the paint-
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Figure 2.1: ”Peter Paul Rubens and Jan Brueghel the Elder: The Feast of Achelous” (45.141) In Heilbrunn
Timeline of Art History. New York: The Metropolitan Museum of Art, 2000–. http://www.metmuseum.
org/toah/works-of-art/45.141. (October 2006)

ing have been occluded, it becomes possible to identify important regions on a much

more detailed scale.

2.3 Author attribution experiment

The goal of an artist attribution task is to attribute an unseen artwork to the artist

who created it. To be able to perform this task adequately, PigeoNET needs to dis-

cover features that distinguish an artist from other artists, but especially to discover

features that are characteristic of each artist. In the rest of this section we will discuss

the dataset (2.3.1), network architecture (2.3.2), training procedure (2.3.3), evaluation

procedure (2.3.3), and the quantitative (2.3.4) and qualitative results (2.3.5).
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2.3.1 Dataset

The characteristic features of an artist can be discovered by studying artworks which

are representative of that artist. Yet, obtaining a sufficiently large sample of such im-

ages is problematic, given the lack of (automatic) methods and criteria to determine

whether an artwork is representative. A commonly taken approach to circumvent the

need for a representative sample is to take a very large sample. As such, a dataset

that contains a large number of images, and a large number of images per artist, is

required.

The Rijksmuseum Challenge dataset [85] consists of 112, 039 digital photographic

reproductions of artworks by 6, 629 artists exhibited in the Rijksmuseum in Amster-

dam, the Netherlands. All artworks were digitised under controlled settings. Within

the set there are 1, 824 different types of artworks (e.g., drawings, paintings, and vases)

and 406 annotated materials, such as paper, canvas, porcelain, iron, and wood. To our

knowledge, this is the largest available image dataset of artworks, and the only dataset

that meets our requirements.

We divided the Rijksmuseum Challenge dataset into a training, validation, and test

set (cf. [85]). In this chapter these sets are used to train PigeoNET, to optimise the

hyper-parameters, and to evaluate the performance of PigeoNET on unseen examples,

respectively. The dataset contains a number of artworks which lack a clear attribution,

these are labelled as either ‘Anonymous’ or ‘Unknown’, 16, 686 and 685 respectively.

We chose to exclude these artworks, because our objective is to relate visual features

to specific artists.

Whilst the Rijksmuseum Challenge dataset contains a large number of images of

many different types of artworks by a large number of artists, there are many artists

for whom only a few artworks are available or artists who have created many different

types of artworks. As stated in the Introduction, these variations might influence the

performance of PigeoNET in non-obvious ways. To this end we consider the following

three sources of variation: (1) heterogeneity versus homogeneity of classes (types of
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artworks), (2) number of artists, and (3) number of artworks per artist.

Two main types of subsets were defined to assess the effect of heterogeneity ver-

sus homogeneity of artworks: type A (for “All”) and type P (for “Prints”), respec-

tively. As is evident from Table 2.2 on page 28, prints form the majority of artworks

in the Rijksmuseum Challenge dataset. The homogeneous type of subsets (P) has

three forms: P1, P2 and P3. Subsets of type P1 have varying numbers of artists and

artworks per artist (as is the case for A). Subsets of type P2 have a fixed number of

artworks per artist. Finally, subsets of type P3 have a fixed number of artists. We

remark that the number of examples per artist for the subsets in A and P1 are mini-

mum values. For very productive artists these subsets may include more artworks. For

subsets of types P2 and P3, the number of examples is exact and constitutes a random

sample of the available works per artist. A detailed overview of the resulting 15 sub-

sets is listed in Table 2.1∗. For the heterogeneous subset of at least 256 artworks of

type A, Table 2.2 on page 28 provides a more detailed listing which specifies the three

most prominent categories: Prints, Drawings, and Other. The Other category includes

a variety of different artwork types, including 35 paintings.

All images were down-sampled to 256× 256 pixels following the procedure described

in [71], to adhere to the fixed input size requirement of the network architecture, and

are normalised at runtime by subtracting the mean image as calculated on the training

set.

2.3.2 Network Architecture

The architecture of PigeoNET is based on the Caffe [57] implementation† of the net-

work described in [71], and consists of 5 convolutional layers and 3 fully connected

layers. The number of output nodes of the last fully-connected layer is equal to the

number of artists in the dataset, ranging from 26 to 958 artists.
∗The largest subsets for P2 and P3 are identical, but are reported twice in Table 2.1 for clarity.
†Available at: http://caffe.berkeleyvision.org/model_zoo.html.
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Table 2.1: Overview of subsets and the number of training, validation, and test images per subset. The
subsets are labelled by their types. Type A (“All”) are subsets containing varying artworks, examples and,
examples per artist. Type P (“Prints”) refers to subsets of prints only. P1: varying numbers of artworks,
examples and, examples per artist. P2: number of examples constant (128). P3: number of artists con-
stant (78). For A and P1, the numbers of examples per artists represent the minimum numbers, while for
P2 and P3, these numbers represent the exact number of artworks per artist.

# Examples # Artists # Training # Validation # Test
Subsets per artist (classes) images images images

A

10 958 56,024 7,915 15,860
64 197 37,549 5,323 10,699
128 97 28,336 4,063 8,058
256 34 17,029 2,489 4,838

P1

10 673 44,539 6,259 12,613
64 165 31,655 4,484 8,983
128 78 23,750 3,408 6,761
256 29 14,734 2,171 4,200

P2

128 26 3,328 1,209 2,277
128 39 4,992 1,521 2,970
128 52 6,656 2,160 4,341
128 78 9,984 3,408 6,761

P3

10 78 780 3,408 6,761
64 78 4,992 3,408 6,761
128 78 9,984 3,408 6,761

2.3.3 Training procedure

An effective training procedure was used (cf. [71]), in that the learning rate, momen-

tum, and weight decay hyperparameters were assigned the values of 10−2, 0.9, and

5 · 10−4, respectively. The learning rate was decreased by a factor 10 whenever the

error on the validation set stopped decreasing. The data augmentation procedure con-

sisted of random crops and horizontal reflections. While orientation is an important

feature to detect authorship, the horizontal reflections were used to create a larger

sample size, as it effectively doubles the amount of available training data. It thus

provides PigeoNET with sufficient data to learn from, although this may negatively

impact PigeoNET’s ability to pick up on orientation clues to perform classification. In

contrast to [71], only a single crop per image was used during training, with crops of

size 227× 227 pixels, and the batch size was set to 256 images per batch.
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Table 2.2: List of the 34 artists with at least 256 artworks and the distribution of artworks over main types
(Prints, Drawings, and Other).

# Name Prints Drawings Other
1 Heinrich Aldegrever 347 27
2 Ernst Willem Jan Bagelaar 400 27
3 Boëtius Adamsz. Bolswert 592
4 Schelte Adamsz. Bolswert 398
5 Anthonie Van Den Bos 531 3
6 Nicolaes De Bruyn 515 2
7 Jacques Callot 1,008 4 1
8 Adriaen Collaert 648 1
9 Albrecht Dürer 480 9 2
10 Simon Fokke 1,177 90
11 Jacob Folkema 437 4 3
12 Simon Frisius 396
13 Cornelis Galle (i) 421
14 Philips Galle 838
15 Jacob De Gheyn II 808 75 10
16 Hendrick Goltzius 763 43 4
17 Frans Hogenberg 636 4
18 Romeyn De Hooghe 1,109 5 5
19 Jacob Houbraken 1,105 42 1
20 Pieter De Jode II 409 1
21 Jean Lepautre 559 1
22 Caspar Luyken 359 18
23 Jan Luyken 1,895 33
24 Jacob Ernst Marcus 372 23 2
25 Jacob Matham 546 4
26 Meissener Porzellan Manufaktur 1,003
27 Pieter Nolpe 344 2
28 Crispijn Van De Passe I 841 15
29 Jan Caspar Philips 401 17
30 Bernard Picart 1,369 132 3
31 Marcantonio Raimondi 448 2
32 Rembrandt Harmensz. Van Rijn 1,236 119 29
33 Johann Sadeler I 578 1
34 Reinier Vinkeles 573 50

All training was performed using the Caffe framework [57] on a NVIDIA Tesla K20m

card and took between several hours and several days, depending on the size of the

subset.
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Evaluation procedure

The objective of the artist attribution task is to identify the correct artist for each

unseen artwork in the test set. To this end the performance is measured using the

mean class accuracy (MCA), which is the average of the accuracies for all artists. This

makes sure that the overall performance is not heavily biased by the performance on a

single artist.

During testing the final prediction is averaged over the output of the final softmax

layer of the network for 10 crops per image. These crops are the four corner patches

and the central patch plus their horizontal reflections.

2.3.4 Results

The results of the artist attribution task are listed in Table 2.3 on page 30. The re-

sults on the artist attribution task show that the three sources of variation, (hetero-

geneity versus homogeneity of classes (types of artworks), number of artists, and num-

ber of artworks per artist.) affect the performance in different ways. The effect of het-

erogeneity versus homogeneity can be assessed by comparing the results for A and

P1. The results obtained with P1 are slightly better than those obtained with A (ex-

cept for 128 examples per artist). However, A and P1 differ also in number of artists,

which as shown by the results on P2 and P3 affects the performance.

The total number of artists (P2) and the number of examples per artist (P3) have

a more prominent effect on the attribution performance of PigeoNET. Increasing the

number of artists while keeping the number of examples per artist constant (as done

for P2) leads to a decrease in performance. With more examples per artist (P3) the

performance increases tremendously, indicating that PigeoNET is unable to generalise

when presented with a small number of examples.

Our results suggest that the effects of the number of artists and the number of ex-

amples per artist are closely related. This agrees with the findings reported in [71] and

leads to the observation that by considering more examples per artist the number of
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Table 2.3: Mean Class Accuracies (MCA) for the artist attribution task on the 15 data subsets. Bold val-
ues indicate the best result per type, the overall best result is underlined.

# Examples # Artists MCA
Subsets per artist (classes)

A

10 958 52.5
64 197 68.2
128 97 74.5
256 34 78.3

P1

10 673 60.0
64 165 70.2
128 78 73.3
256 29 78.8

P2
128 26 63.9
128 39 55.6
128 52 52.7
128 78 52.0

P3
10 78 13.1
64 78 38.0
128 78 52.0

artists to be modeled can be increased.

The subsets of type A are comparable to the subsets used by Mensink et al. [85],

who obtain a comparable MCA of 76.3 on a dataset containing 100 artists using SIFT

features, Fisher vectors, and 1-vs-Rest classification.

Figure 2.2 shows a visualisation of the confusion matrix for the subset with at least

256 examples of all artwork types. The rows and columns correspond to the artists

in Table 2.2. The rows represent the artist estimates by PigeoNET, the columns the

actual artists. The diagonal entries represent correct attributions which are colour

coded.

Upon further analysis of the results for the 256 example subset (A) of all artwork

types we observe that the best artist-specific classification accuracy (97.5%) is ob-

tained for Meissener Porzellan Manufaktur, a German porcelain manufacturer (class

26). Among the different types of artworks in the dataset, these porcelain artworks are

visually the most distinctive as determined by our model. Given that the visual char-

acteristics of porcelain differ considerably from all other artworks in the dataset, it is
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Figure 2.2: Confusion matrix for all artists with at least 256 training examples of all artwork types. The
rows represent the artist estimates and the columns the actual artists. Row and column numbers (from left
to right and from bottom to top) correspond to those as listed in Table 2.2.

not surprising that the highest classification accuracy is achieved for this class.

The worst artist-specific classification accuracy (60.6%) is achieved for Schelte Bol-

swert (class 4), as indicated by the yellow square on the diagonal in the confusion

matrix (fourth row from below, fourth column from left). The low accuracy may be

partially explained by the confusion between Schelte Bolswert and his older brother

and instructor Boëtius Bolswert (class 3). Yet, because the classification accuracy

for Boëtius Bolswert (86.3) seems much less affected by the confusion, an alternative

possibility is that PigeoNET is more inclined to assign visual characteristics that are

present in their works to Boëtius Bolswert because his works appear more frequently

in the dataset.

In a similar vein, the misclassifications that occur between Fokke Simon (10) and
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Jan Caspar Philips (29), and between Jan Luyken (23) and Caspar Luyken (22) are

notable. Fokke Simon was a student of Jan Caspar Philips, and Jan and Caspar Luyken

were father and son. Both pairs of artists have worked together on several artworks in

the Rijksmuseum Challenge dataset, despite the label in the dataset indicating that

these artworks belong to only one of these artists. We became aware of these potential

dual-authorship cases after having performed our main experiment. Dual-authorship

cases will be examined in more detail in Section 2.4.

2.3.5 Visualisation and assessment

Visualisations of the importance of each region in an artwork can be generated us-

ing the regions of importance detection method described in Section 2.2.1, where the

occlusions are performed with a grey block of 8 × 8 pixels, to indicate approximate

regions which are characteristic of the artist. The regions of importance can be visu-

alised using heatmap colour coding, as shown in Figure 2.3b. The value of a region in

the heatmap corresponds to the certainty score of PigeoNET for the artwork with that

region occluded. In other words, a region with a lower value is of greater importance

in correctly attributing the artwork, with (dark) red regions being highly characteristic

of the artist, and (dark) blue regions being the least characteristic.

When comparing the artwork and heatmap in Figure 2.3 of the drawing by Rem-

brandt, it is very noticeable that PigeoNET assigns much weight to seemingly empty

areas. The texture of the material on which an artwork is created can be indicative

of the artist who created the artwork [61]. When taking a closer look at Figure 2.4,

with enhanced contrast, it becomes apparent that the areas are not empty and that a

distinctive visual texture is present. The visual pattern is sufficiently distinctive and

artist-specific for PigeoNET to assign it a larger weight. The pattern is an example of

a visual characteristic which is indirectly related to the artist. It illustrates the impor-

tance of the transparency of automatic attribution to allow human experts to interpret

and evaluate the visual characteristic.
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(a) Art work (b) Heatmap

Figure 2.3: Image (a) and heatmap (b) of ‘Study of a man, seen from behind’ by Rembrandt Harmensz.
van Rijn (1629-1630). Lower (red) values in the heatmap correspond to greater importance in correctly
identifying Rembrandt.

2.4 Deciding between two artists

In the previous section we used PigeoNET to attribute an artwork to a single artist.

Yet, as illustrated by the work of Peter Paul Rubens and Jan Brueghel in Figure 2.1,

in many cases two (or more) artists have worked on the same artwork (see also [11]).

As evident from our results, PigeoNET had difficulty in correctly attributing art-

works of closely collaborating artists. An intriguing explanation for PigeoNET’s failure

to assign the ‘correct one’ of two potential artists to artworks is that the artworks are

created by both artists. In that case, it would not be a failure at all and indicates that

PigeoNET discovered that the two artists are similar, and it recognises the character-

istic features of both artists, even if the work is attributed to only one artist. In the

remainder of this section we demonstrate the possibility of using PigeoNET to perform

a fine-grained analysis of an artwork, attributing individual image regions to an artist.

33



Figure 2.4: Contrast enhanced detail view of a highly textured region of the artwork shown in Figure 2.3a.

2.4.1 Discovering dual-authorship

PigeoNET had difficulty in distinguishing between the works by Jan and Caspar Luyken,

father and son who worked together and created many prints. Throughout their ca-

reers Jan Luyken chose to depict pious and biblical subjects, whereas Caspar Luyken

mostly depicted worldly scenes [3]. As an example, we consider the artwork shown in

Figure 2.5, Transfer of the Spanish Netherlands by Philip II to Isabella Clara Eugenia,

Infanta of Spain, 1597. The work depicts the transfer of the Spanish Netherlands by

Filips II to Isabella Clara Eugenia. Although, arguably it is a very worldly scene, it is

nevertheless attributed to Jan Luyken. Could it be possible that the artwork is incor-

rectly attributed to Jan Luyken? Obviously, this is a question that has to be answered

by experts of their works.
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Figure 2.5: Image of the Transfer of the Spanish Netherlands by Philip II to Isabella Clara Eugenia, Infanta
of Spain, 1597 by Jan Luyken, 1697 - 1699.

Our findings may support them in their assessment. Although, PigeoNET correctly

attributed the artwork to Jan Luyken, the reported certainty score for Caspar Luyken

is very high. Apparently, PigeoNET responds to visual features that are characteristic

of Caspar Luyken. Using PigeoNET’s visualisation, we are able to determine for each

region how characteristic it is for each of the two artists. We created a visualisation

based on the certainty scores for Jan Luyken and Caspar Luyken. Figure 2.6 shows

the visualisation using colour coding on a yellow to blue scale. The yellow regions are

characteristic for Jan Luyken, whereas the blue regions are characteristic for Caspar

Luyken, the green regions are indeterminate and show characteristics of either artists

in equal amounts.

This example demonstrates the potential use of PigeoNET to support the study of
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Figure 2.6: Visualisation of how characteristic each image region is for the artists Jan and Caspar Luyken.
The yellow regions are characteristic of Jan Luyken, whereas the blue regions are characteristic of Caspar
Luyken.

dual-authorship artworks.

2.5 Discussion

Previous work on automatic artist attribution has shown that prior knowledge can be

leveraged in order to engineer features for automatic artist attribution. In this chapter,

we presented a novel approach that does not rely on prior knowledge, and is capable

of discovering characteristic features automatically enabling a successful artist attri-

bution. Additionally, we demonstrated that PigeoNET visualisations reveal artwork

regions most characteristic of the artist and that PigeoNET can aid in answering out-
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standing questions regarding dual-authorship.

In what follows, we discuss considerations regarding the dataset used and address

how the selection of subsets may affect the nature of visual characteristics discovered.

Although the Rijksmuseum challenge dataset is the largest available dataset contain-

ing digital reproductions of artworks acquired under controlled conditions [85], it does

suffer from two main limitations. First, given the wide variety of artwork types, it is

unclear how the “controlled conditions” were defined for different artworks. Any vari-

ation in the reproduction setting (e.g., illumination, perspective, camera type) may be

picked up by PigeoNET. Presumably, our P (prints only) datasets suffer less from this

problem. Still, even in these datasets subtle differences in digitization (e.g., artifacts

introduced by the scanner or photocamera) may leave visual marks that are picked up

by PigeoNET. An ideal dataset for attribution would be one in which no such visual

marks are present. However, such datasets do not exist and are hard (if not impos-

sible) to create on this scale. Therefore, transparency of the acquired features by Pi-

geoNET and proper visualisations are essential to aid art experts in their assessment

of the feasibility of classifications.

The second limitation concerns the labelling of artworks. After having performed

our main experiments, we discovered that for some artworks, the Rijksmuseum cata-

log lists multiple contributions, whereas the Rijksmuseum challenge dataset only lists

a single artist [85]. The contributions listed in the Rijksmuseum catalog vary greatly

(from inspiration to dual-authorship) and do not always influence the actual attribu-

tion, but do create uncertainty about the attribution of artworks in the Rijksmuseum

challenge dataset. Although this significantly limits the possibility of learning stylistic

features from such artworks, it does not prohibit PigeoNET from learning visual char-

acteristics that are associated with the primary artist as such characteristics remain

present in the artwork. Still, the validity and consistency of attributions is of major

concern to safeguard the validity of methods such as PigeoNET. Also in the creation

of such databases, involvement of human art experts is required.

The results obtained in this work on the automatic artist attribution task show that
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PigeoNET is capable of accurately attributing unseen works to the correct artist. The

increase of performance for the sets with a higher number of examples shows that in-

cluding more examples per artist leads to a better performance. Moreover, the com-

plete Rijksmuseum Challenge dataset is a highly diverse dataset with many different

types of art. For some cases (e.g., the porcelain of the Meissener Porzellan Manufak-

tur) this results in a class that is visually very distinctive from the rest of the dataset,

which could make it easier to identify the correct artist. However, when comparing

the performances obtained on the homogeneous P1 subsets (prints only) with those on

the more heterogeneous A subsets (all artwork types), the difference in performance is

quite small. This demonstrates that PigeoNET is capable of learning a rich representa-

tion of multiple artwork types without a major impact on its predictive power. Part of

the types of features discovered in the A subsets are likely to distinguish between art

types (e.g., a porcelain object versus a painting), rather than between author styles. In

the P subsets, features will be more tuned to stylistic differences, because these sub-

sets are confined to a single type of artwork.

Our findings indicate that the number of artists and the number of examples per

artist have a very strong influence on the performance, which suggests that a further

improvement of the performance is possible by expanding the dataset. In future re-

search we will determine to what extent this is the case.

2.6 Conclusion

In this chapter we have evaluated a feature learning system to assess to what extent it

is possible to discover an artist’s visually characteristic features. The results on the au-

tomatic attribution task demonstrate that the system is capable, up to a high degree

of accuracy, of using visual characteristics to assign unseen artworks to the correct

artist. Moreover, we demonstrated the possibility of using the visual characteristics to

reveal the artist of a specific region within an artwork, which in the case of multiple

artists could lead to new discoveries about the origin and creation of important works

of cultural heritage. Hence, we may conclude that PigeoNET represents a fruitful ap-
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proach for future computer-supported examination of artworks.
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3
Scale-variant and scale-invariant features

This chapter has been previously published as: N. van Noord, E. Postma (2017). Learning scale-

variant and scale-invariant features for deep image classification. Pattern Recognition, 61, pp. 583–

592.



Abstract

Convolutional Neural Networks (CNNs) require large image corpora to be trained on

classification tasks. The variation in image resolutions, sizes of objects and patterns

depicted, and image scales, hampers CNN training and performance, because the task-

relevant information varies over spatial scales. Previous work attempting to deal with

scale variations focused on encouraging scale-invariaatnt CNN representations. How-

ever, scale-invariant representations are incomplete representations of images, because

images contain scale-variant information as well. This chapter addresses the combined

development of scale-invariant and scale-variant representations. We propose a multi-

scale CNN method to encourage the recognition of both types of features and evaluate

it on a challenging image classification task involving task-relevant characteristics at

multiple scales. The results show that our multi-scale CNN outperforms single-scale

CNN. This leads to the conclusion that encouraging the combined development of a

scale-invariant and scale-variant representation in CNNs is beneficial to image recogni-

tion performance.
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3.1 Introduction

Convolutional Neural Networks (CNN) have drastically changed the

computer vision landscape by considerably improving the performance on most

image benchmarks [71, 43]. A key characteristic of CNNs is that the deep(-based) rep-

resentation, used to perform the classification, is generated from the data, rather than

being engineered. The deep representation determines the type of visual features that

are used for classification. In the initial layers of the CNN, the visual features corre-

spond to oriented edges or colour transitions. In higher layers, the visual features are

typically more complex (e.g., conjunctions of edges or shapes). Finding the appropri-

ate representation for the task at hand requires presenting the CNN with many in-

stances of a visual entity (object or pattern) in all its natural variations, so that the

deep representation captures most naturally occurring appearances of the entity.

Three main sources of natural variation are the location, the viewpoint, and the size

of an object or pattern. Variations in location are dealt with very well by a CNN [36],

which follows naturally from the weight sharing employed in the convolution layers

[74]. CNNs can also handle variations in viewpoint by creating filters that respond to

viewpoint-invariant features [68]. Size variations pose a particular challenge in CNNs

[126], especially when dealing with image corpora containing images of varying reso-

lutions and depicting objects and patterns at different sizes and scales, as a result of

varying distances from the camera and blurring by optical imperfections, respectively.

This leads to variations in image resolution, object size, and image scale, which are

three different properties of images. The relations between image resolution, object

size, and image scale is formalized in digital image analysis using Fourier theory [37].

Spatial frequencies are a central concept in the Fourier approach to image process-

ing. Spatial frequencies are the two-dimensional analog of frequencies in signal process-

ing. The fine details of an image are captured by high spatial frequencies, whereas the

coarse visual structures are captured by low spatial frequencies. In what follows, we
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provide a brief intuitive discussion of the relation between resolution and scale, with-

out resorting to mathematical formulations.

3.1.1 Image resolution, object size, and image scale

Given an image, its resolution can be expressed in terms of the number of pixels (i.e.,

the number of samples taken from the visual source); low resolution images have fewer

pixels than high resolution images. The scale of an image refers to its spatial frequency

content. Fine scale images contain the range from high spatial frequencies (associated

with small visual structures) down to low spatial frequencies (with large visual struc-

tures). Coarse scale images contain low spatial frequencies only. The operation of spa-

tial smoothing (or blurring) of an image corresponds to the operation of a low-pass fil-

ter: high spatial frequencies are removed and low spatial frequencies are retained. So,

spatial smoothing a fine scale image yields a coarser scale image.

The relation between the resolution and the scale of an image follows from the ob-

servation that in order to represent visual details, an image should have a resolution

that is sufficiently high to accommodate the representation of the details. For instance,

we consider the chessboard pattern shown in Figure 3.1a. Figure 3.1b shows a 6 × 6

pixel reproduction of the chessboard pattern. The resolution of the reproduction is in-

sufficient to represent the fine structure of the chessboard pattern. The distortion of

an original image due to insufficient resolution (or sampling) is called aliasing [37].

As this example illustrates, image resolution imposes a limit to the scale at which

visual structure can be represented. Figure 3.1c displays the space spanned by resolu-

tion (horizontal axis) and scale (vertical axis). The limit is represented by separation

of the shaded and unshaded regions. Any image combining a scale and resolution in

the shaded area suffers from aliasing. The sharpest images are located at the shaded-

unshaded boundary. Blurring an image corresponds to a vertical downward movement

into the unshaded region

Having discussed the relation between resolution and scale, we now turn to the dis-

cussion of the relation of object size to resolution and scale. Real-world images with a
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Figure 3.1: Illustration of aliasing. (a) Image of a chessboard. (b) Reproductions of the chessboard with
an image of insufficient resolution (6 × 6 pixels). The reproduction is obtained by applying bicubic inter-
polation. (c) The space spanned by image resolution and image scale. Images defined by resolution-scale
combinations in the shaded area suffer from aliasing. See text for details.

Figure 3.2: Artwork ‘Horse-smith with a donkey’ (‘Hoefsmid bij een ezel’) by Jan de Visscher.

given scale and resolution contain objects and structures at a range of sizes [80], For

example, the image of the artwork shown in Figure 3.2, depicts large-sized objects

45



(people and trees) and small-sized objects (hairs and branches). In addition, it may

contain visual texture associated with the paper it was printed on and with the tools

that were used to create the artwork. Importantly, the same object may appear at dif-

ferent sizes. For instance, in the artwork shown, there are persons depicted at differ-

ent sizes. The three persons in the middle are much larger in size than the one at the

lower right corner. The relation between image resolution and object size is that the

resolution puts a lower bound on the size of objects that can be represented in the im-

age. If the resolution is too low, the smaller objects cannot be distinguished anymore.

Similarly, the relation between image scale and object size is that if the scale becomes

too coarse, the smaller objects cannot be distinguished anymore. Image smoothing re-

moves the high-spatial frequencies associated with the visual characteristics of small

objects.

3.1.2 Scale-variant and scale-invariant image representations

Training CNNs on large image collections that often exhibit variations in image res-

olution, depicted object sizes, and image scale, is a challenge. The convolutional fil-

ters, which are automatically tuned during the CNN training procedure, have to deal

with these variations. Supported by the acquired filters the CNN should ignore task-

irrelevant variations in image resolution, object size, and image scale and take into ac-

count task-relevant features at a specific scale. The filters providing such support are

referred to as scale-invariant and scale-variant filters, respectively [35].

The importance of scale-variance was previously highlighted by Gluckman [35] and

Park et al. [90], albeit for two different reasons. The first reason put forward by Gluck-

man arises from the observation that images are only partially described by scale in-

variance [35]. When decomposing an image into its scale-invariant components, by

means of a scale-invariant pyramid, and subsequently reconstructing the image based

on the scale-invariant components the result does not fully match the initial image,

and the statistics of the resulting image do not match those of natural images. For

training a CNN this means that when forcing the filters to be scale-invariant we might
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miss image structure which is relevant to the task. By means of space-invariant im-

age pyramids, which separate scale-specific from scale-invariant information, proposed

in [35], Gluckman et al. demonstrated that object recognition benefitted from scale-

variant information.

The second reason was presented by Park et al. in [90], where they argue that the

need for scale-variance emerges from the limit imposed by image resolution, stating

that “Recognizing a 3-pixel tall object is fundamentally harder than recognizing a 300-

pixel object or a 3000-pixel object.” [90, p. 2]. While recognising very large objects

comes with it own challenges, it is obvious that the recognition task can be very differ-

ent depending on the resolution of the image. Moreover, the observation that recogni-

tion changes based on the resolution ties in with the previously observed interaction

between resolution and scale: as a reduction in resolution also changes the scale. Park

et al. [90] identify that most multi-scale models ignore that most naturally occurring

variation in scale, within images, occurs jointly with variation in resolution, i.e. ob-

jects further away from the camera are represented at a lower scale and at a lower

resolution. As such they implement a multi-resolution model and demonstrate that

explicitly incorporating scale-variance boosts performance.

Inspired by the earlier studies of Gluckman [35] and Park et al. [90], we propose a

multi-scale CNN which explicitly deals with variation in resolution, object size and

image scale, by encouraging the development of filters which are scale-variant, whilst

constructing a representation that is scale-invariant.

The remainder of this chapter is organised as follows. Section 3.2 contains an overview

of previous work that deals with scale variation for learning deep image representa-

tions. In Section 3.3 we provide a detailed presentation of our multi-scale CNN for

scale-invariant and scale-variant filters. Section 3.4 outlines the task used for evalu-

ating the performance of the multi-scale CNN. In Section 3.5 the experimental setup

is described, including the dataset and the experimental method. In Section 3.6 the

results of the experiments are presented. We discuss the implications of using multi-

scale CNNs in Section 3.7. Finally, Section 3.8 concludes by stating that combining
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scale-variant and scale-invariant features contributes to image classification perfor-

mance.

3.2 Previous work

In this section, we examine learning deep image representations that incorporate scale-

variant and/or scale-invariant visual features by means of CNNs. Scale variation in

images and its impact on computer vision algorithms is a widely studied problem [80,

83], where invariance is often regarded as a key property of a representation [78]. It

has been shown that under certain conditions CNN will develop scale-invariant filters

[73]. Additionally, various authors have investigated explicitly incorporating scale-

invariance in deep representations learnt by CNN [100, 126, 36, 65, 52]. While these

approaches successfully deal with scale-invariance they forgo the problem of recognis-

ing scale-variant features at multiple scales [90].

Standard CNN trained without any data augmentation will develop representations

which are scale-variant. As such it is only capable of recognising the features it was

trained on, at the scale it was trained on, such a CNN cannot deal with scale-variant

features at different scales. A straightforward solution to this limitation is to expose

the CNN to multiple scales during training, this approach is typically referred to as

scale jittering [111, 105, 33]. It is commonly used as a data augmentation approach to

increase the amount of training dataset, and as a consequence reduce overfitting. Ad-

ditionally, it has been shown that scale jittering improves classification performance

[105]. While part of the improved performance is due to the increase in training data

and reduced overfitting, scale jittering also allows the CNN to learn to recognise more

scale-variant features, and potentially develop scale-invariant filters. Scale-invariant

filters might emerge from the CNN being exposed to scale variants of the same fea-

ture. However, standard CNN typically do not develop scale-invariant filters [73], and

instead will require more filters to deal with the scaled variants of the same feature

[126], in addition to the filters needed to capture scale-variant features. A consequence

of this increase in parameters, which increases further when more scale variation is in-
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troduced, is that the CNN becomes more prone to overfit and training the network

becomes more difficult in general. In practice, this limits scale jittering to small scale

variations. Moreover, scale jittering is typically implemented as jittering the resolu-

tion, rather than explicitly changing the scale, which potentially means that jittered

versions are actually of the same scale.

One approach that is able to deal with larger scale variations, whilst offering many

of the same benefits as scale jittering is multi-scale training [124]. Multi-scale training

consists of training separate CNN on fixed size crops of resized versions of the same

image. At test time the softmax class posteriors of these CNN are averaged into a sin-

gle prediction, taking advantage of the information from different scales and model

averaging [16], resulting in improved performance over single scale classification. How-

ever, because the work by Wu et al. [124] is applied to datasets with a limited image

resolution, they only explore the setting in which multi-scale training is applied for

a relatively small variation in scales, and only two scales. Moreover, as dealing with

scale variation is not an explicit aim of their work they do not analyse the impact of

dealing with multiple scales, beyond that it increases their performance. Finally, be-

cause of the limited range of scales they explored they do not deal with aliasing due

to resizing. Aliasing is harmful for any multi-scale approach as it produces visual arti-

facts which would not occur in natural images of the reduced scale, whilst potentially

obfuscating relevant visual structure at that scale.

In this work we aim to explicitly learn scale-variant features for large variations in

scale, and make the following three contributions: (1) We present a modified version

of multi-scale training that explicitly creates multiple scales, reducing aliasing due to

resizing, allowing us to compare larger scale differences whilst reducing redundancy be-

tween scales. (2) We introduce a novel dataset of high resolution images that allows

us to explore the effects of larger scale variations. (3) We perform an in-depth analysis

of the results and compare different scale combinations in order to increase our under-

standing of the influence of scale-variation on the classification performance.
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3.3 Multi-scale Convolutional Neural Network

In this section we present the multi-scale CNN by explaining how a standard (single-

scale) CNN performs a spatial decomposition of images. Subsequently, we motivate

the architecture of the multi-scale CNN in terms of the scale-dependency of the decom-

position.

CNNs perform a stage-wise spatial decomposition of the input, for an image of a

face this is typically described in terms of pixels which combine into edges, which

combine into contours, into simple parts of faces, and finally into entire faces. This

is achieved by repeating alternating convolution and pooling operations across stages.

At the first stage, in the convolution operation, the image is transformed by a set of

several (learned) filters with a limited spatial extent (typically a small sub-region of

the image). After which the pooling operation reduces the dimensionality of the con-

volution. At each subsequent convolution-pooling stage, the output of the previous

stage is convolved by another set of (learned) filters and subsequently pooled [74]. As

a consequence, both the complexity of the composite transformation and the image

area covered increases with each stage [29]. Therefore, relatively simple visual patterns

with a small spatial extent are processed at the early stages, whereas more complex

visual patterns with a large spatial extent are processed at the later stages [74, 126].

This dependency closely ties the representation and recognition of a visual pattern to

its spatial extent, and thus to a specific stage in the network [101, 41].

The strength of this dependency is determined by the network architecture in which

the amount of subsampling (e.g., via strided operations or pooling) is specified, this

also determines the size of the spatial output of the network. In the case of a sim-

ple two layer network with 2 × 2 filters as in Figure 3.3, the network produces a sin-

gle spatial output per 4 × 4 region in the input. Whereas in a deeper network (con-

taining strided and pooling operations such as in [71]) a single output can describe a

64 × 64 pixel region of the input. Because the amount of subsampling is determined

by the network architecture, the size of the output, or spatial output map, scales with
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Figure 3.3: CNN perform a stage-wise spatial decomposition. A first layer of 2 × 2 filters is applied to the
input image, followed by second layer of strided 2 × 2 filters, which spatially subsample the output of the
previus layer. This results in a 2× 2 output, which describes a 4× 4 input region.

the size of the input. Due to the scaling the relative portion of the input described

by a single output node decreases: a 4 × 4 pixels image can be described with 4 non-

overlapping 2 × 2 filters, where each filter describes one-fourth of the image. Yet for

an 8 × 8 image it would require 16 identically sized filters to cover the input, reducing

the portion of the image described by each filter to one-sixteenth. The reduction in

relative proportion described by a single output strongly influences the characteristics

of the filters in the network. Filters that describe one-sixteenth of a portrait picture

might only correspond to a part of a nose, or an ear, whereas filters that cover one-

fourth of the picture might correspond to an entire cheek, chin, or forehead. For artist

attribution this means that a network with filters that cover relatively small parts of

the input are suitable to describe the fine characteristics but cannot describe the com-

position or iconography of the artwork. As such the network architecture should be

chosen in concurrence with the resolution of the input.

Because training CNNs on an image dataset results in a hierarchy of feature rep-

resentations with increasing spatial extent, a network capable of analysing the entire

range from fine to coarse visual characteristics in an image requires many stages in or-

der to capture all the intermediate scales. Moreover, as to not discard information by

subsampling between stages, the subsampling has to be performed gradually. Grad-

ual subsampling is performed by having a very deep network with many stages, each

subsampling a little. The complexity and the number of parameters in a network is
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determined by the number of layers and the number of parameters per layer, as such,

increasing the number of layers increases the complexity of the network. A more com-

plex network requires more training data, which despite the increasing availability of

images of artworks is still lacking. Moreover, the computational demand of the net-

work increases strongly with the complexity of the network, making it infeasible to

train a sufficiently complex network [45]. An alternative to increasing the complexity

of an individual CNN is to distribute the task over specialised CNNs and combining

the resulting predictions into a single one. The biologically motivated multi-column

CNN architecture [16] is an example of such an approach.

The multi-scale CNN presented in this chapter is based on a multi-scale image rep-

resentation, whereby a separate CNN is associated with each scale. This allows the

scale-specific CNNs to develop both scale-variant and scale-invariant features. The

multi-scale representation is created using a Gaussian pyramid [2]. The bottom level

of the pyramid corresponds to the input image, subsequent levels contain smoothed

(and down-sampled) versions of the previous levels. A visual representation of the

model architecture is shown in Figure 3.4. Note that down-sampling is not necessary

to create the higher pyramid levels, and that it is possible to fix the resolution and

only change the scale. However, smoothing results in a redundancy between neigh-

bouring pixels, as they convey the same information.

3.4 Image classification task

The proposed multi-scale CNN will be evaluated on a task involving a large data set

of images of artworks that are heterogeneous in scale and resolution. In our previous

work, we have applied a single CNN to a comparable dataset to study computational

artist attribution (where the task was to determine who authored a given artwork)

[120]. For artist attribution there is often insufficient information on a single scale to

distinguish between very similar artists. For instance, the works of two different artists

who use very similar materials to create artworks depicting different scenes might

be indistinguishable when considering the very fine details only. Alternatively, when
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Figure 3.4: Visual representation of the model architecture. A scale-specific network is applied to a differ-
ent scale, and combined in the ensemble.

artists create artworks depicting a similar scene using different materials, these may be

indistinguishable at a coarse spatial scale. Hence, successful artist attribution requires

scale-variant features in addition to scale-invariant features.

Artist attribution is typically performed by combining current knowledge on the

artist’s practices, technical data, and a visual assessment of the artwork as to estab-

lish its origin and value from an economical and historical perspective [63]. In recent

years it has been shown that this visual assessment can be performed computation-

ally and can lead to promising results on artist attribution image classification tasks

[112, 63, 47, 118, 79, 1]. The increased availability of visual data from the vast digital

libraries of museums and the challenges associated with the unique nature of artworks

has led to an interest in this domain by researchers from a large diversity of fields.

This diversity has resulted in a great many different approaches and techniques aimed

at tackling the problem of visual artist attribution. The visual assessment of artworks

by art experts generally focuses on textural characteristics of the surface (e.g., the can-
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vas) or on the application method (e.g., brushstrokes) [44], this in turn has shaped

many of the computational approaches to visual artwork assessment (e.g., [63, 60, 79]).

More recently, it has been shown that general purpose computer vision approaches

can be used for the visual assessment of artworks, specifically SIFT features [85] and

deep-based representations as learned by a CNN for a general object recognition task

(i.e., ImageNet) [66, 97] can be used to perform image classification tasks on artworks.

This development is a deviation from the practice as performed by art experts, with

the focus shifted from small datasets of a few artists with high resolution images (5

to 10 pixels per mm) to large datasets with many artists and lower resolution images

(0.5 to 2 pixels per mm). By using images of a lower resolution the amount of details

related to the artist’s specific style in terms of application method (e.g., brushstrokes)

and material choices (e.g., type of canvas or paper) become less apparent, which shifts

the focus to coarser image structures and shapes. However, using a multi-scale ap-

proach to artist attribution it is possible to use information from different scales, learn-

ing features appropriate from both coarse and fine details.

3.5 Experimental setup

This section describes the setup of the artist attribution experiment. The setup con-

sists of a specification of the CNN architecture, the dataset, the evaluation, and the

training parameters.

3.5.1 multi-scale CNN architecture

The multi-scale CNN architecture used in this work is essentially an ensemble of single-

scale CNN, where the single-scale CNN matches the architecture of the previously

proven ImageNet model described in [108]. We made two minor modifications to the

architecture described in [108] to account for our larger image size, and different classi-

fication task, in that we (1) replaced the final 6 × 6 average pooling layer by a global

average pooling layer which averages the final feature map regardless of its spatial size,

and (2) reduce the number of ouputs of the softmax layer to 210 to match the number
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of classes in our dataset. A detailed specification of the single-scale CNN architecture

can be found in Table 3.1, where conv-n denotes a convolutional layer with f filters

with a size ranging from 11 × 11 to 1 × 1. The stride indicates the step size of the

convolution in pixels, and the padding indicates how much zero padding is performed

before the convolution is applied. The ReLU activation function is an element-wise op-

eration on the layer output, discarding any negative filter activations, i.e., max(0, x),

where x is a filter activation.

The single-scale CNN architecture used is fully-convolutional, which means that ex-

cept for the final global average pooling layer it consists solely of convolutional layers.

Rather than having max or average pooling layers in the network a convolutional layer

with a stride greater than 1 (typically 2) is used. This convolutional layer effectively

performs the pooling, but combines it with an additional (learnt) non-linear trans-

formation. A fully convolutional architecture has two main benefits for the work de-

scribed in this chapter (1) unlike traditional CNN, a fully-convolutional CNN places

no restrictions on the input in terms of resolution; the same architecture can be used

for varying resolutions, and (2) it can be trained on patches and evaluated on whole

images, which makes training more efficient and evaluation more accurate.

Additionally, this architecture has been shown to work well with Guided Backprop-

agation (GB) [108]. GB is an approach (akin to ‘deconvolution’ [131]) that makes it

possible to visualise what the network has learnt, or which parts of an input image

are most characteristic of a certain artist. GB consists of performing a backward pass

through the network and computing the gradient with respect to an input image. In

order to visualise which parts of an image are characteristic of an artist, the activa-

tions of the softmax class posterior layer are all set to zero, except the activation for

the artist of interest, and subsequently the gradient with respect to an input image

will activate strongest in the areas characteristic of that artist.

Our multi-scale is constructed as an ensemble, or multi-column [16], architecture,

in which the softmax class-posteriors of the single-scale CNN are averaged and used

as the final predictions for evaluation, the evaluation procedure is further described in
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Table 3.1: CNN architecture of single-scale networks as used in this chapter. convn denote convolutional
layers. During training a 224 × 224 pixels crop is used, the testing is performed on the entire input image
(which shortest side is in the range of 256 up to 2048 pixels).

Layer Filters Size, stride, pad Description
Training Data - 224× 224, -, - RGB image crop
Testing Data - Entire image, -, - Full RGB image

conv1.1 96 11× 11, 4, 0 ReLU
conv1.2 96 1× 1, 1, 0 ReLU
conv1.3 96 3× 3, 2, 1 ReLU
conv2.1 256 5× 5, 1, 2 ReLU
conv2.2 256 1× 1, 1, 0 ReLU
conv2.3 256 3× 3, 2, 0 ReLU
conv3.1 384 3× 3, 1, 1 ReLU
conv3.2 384 1× 1, 1, 0 ReLU
conv3.3 384 3× 3, 2, 0 ReLU + Dropout (50%)
conv4 1024 1× 1, 1, 0 ReLU
conv5 1024 1× 1, 1, 0 ReLU
conv6 210 1× 1, 1, 0 ReLU

global-pool - - Global average
softmax - - Softmax layer

Subsection 3.5.4.

3.5.2 Dataset

The dataset∗ consists of 58, 630 digital photographic reproductions of print artworks

by 210 artists retrieved from the collection of the Rijksmuseum, the Netherlands State

Museum. These artworks were chosen based on the following four criteria: (1) Only

printworks made on paper, (2) by a single artist, (3) public domain, and (4) at least

96 images by the same artist match these criteria. This ensured that there were suffi-

cient images available from each artist to learn to recognise their work, and excluded

any artworks which are visually distinctive due to the material choices (e.g., porcelain).

An example of a print from the Rijksmuseum collection is shown in Figure 3.5.

For many types of artworks there is a large degree of variation in their physical size:

there are paintings of several meters in width or height, and paintings which are only
∗The dataset is available at https://auburn.uvt.nl/.
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Figure 3.5: Digital photographic reproduction of ‘Head of a cow with rope around the horns’ by Jacobus
Cornelis Gaal.

tens of centimeters in width or height. Moreover, for such artworks there is a large de-

gree of variation in the ratio of pixels per mm and as such the dimension of the repro-

ductions in pixels. Yet, this makes it very appealing to work with print artworks, as

they are much more uniform in terms of physical size as for example paintings. While

there is still some variation in physical size for print artworks, as shown in Figure 3.6.

Previous approaches have dealt with such variations by resizing all images to a single

size, which confounds image resolution with physical resolution.

Normalising the images to obtain fixed pixel to mm ratios would result in a loss of

visual detail. Given that our aim is to have our multi-scale CNN develop both scale-

invariant and scale-variant filters, we take the variation in scales and resolutions for

granted.

A four-level Gaussian (low-pass) pyramid is created following the standard proce-

dure for creating Gaussian Pyramids described in [2, 88]. Initially all images are re-

sized so that the shortest side (height or width) is 2048 pixels, as to preserve the as-

pect ratio, creating the first pyramid level. From this first level the subsequent pyra-

mid level is created by smoothing the previous level, and down-sampling by removing

every other pixel column and row (effectively reducing the image size by a factor two).
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This smoothing and down-sampling step is repeated, every time taking the previous

level as the starting point, to create the remaining two pyramid levels. The smoothing

steps were performed by recursively convolving the images with the Gaussian kernel G,

which is defined as:

G =
1

256



1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1


.

The resulting Gaussian pyramid consists of four levels of images with the shortest

side being 256, 512, 1024, and 2048 pixels for each level respectively.

The dataset is divided into a training (70%), validation (10%), and test set (20%).

The training set is used to train the network, the validation set is used to optimise

the hyperparameters, and the evaluation set is used to estimate the prediction perfor-

mance. All results reported in this chapter are based on the test set.

3.5.3 Training parameters

All networks were trained using an effective training procedure (cf. [71]), with the val-

ues of the learning rate, momentum, and weight decay hyperparameters being 10−2,

0.9, and 5 · 10−4, respectively. Whenever the error on the validation set stopped de-

creasing the learning rate was decreased by a factor 10.

3.5.4 Evaluation

The evaluation is performed on entire images. The fully-convolutional nature of the

multi-scale CNN makes it unnecessary to perform cropping. The scale-specific pre-

diction for an image is the average over the spatial output map, resulting in a single

scale-specific prediction for the entire image. The performance on all experiments is

reported using the Mean Class Accuracy (MCA), which is the average of the accu-
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Figure 3.6: Scatter plot of physical dimensions of the artworks in the test set in millimeters; each point
represents an artwork, its colour indicating the density in the area around it. The scatter plot shows that
the rectangular is the predominant shape of artworks with either a landscape or a portrait orientation. The
majority of the artworks cluster around a size of 250× 150 mm.

racy scores obtained per artist. We report the MCA because it is not sensitive to un-

balanced classes and it allows for a comparison of the results with those reported in

[85, 120]. The MCA is equal to the mean of the precision per class, as such we also re-

port the mean of the recall per class, and the harmonic mean of these mean precision

and mean recall measures, also known as the F-score.

Additionally, we compare our results to those obtained by performing multi-scale

training as described in [124]. We implemented multi-scale training using the same

CNN architecture as used previously, and only varied the input data. Rather than

blurring the images before subsampling the images, we follow [124] and directly sub-
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Table 3.2: Mean Class Accuracies, Mean recall and F-score for the four individual scales and the ensemble
of four scales for our approach.

Scale MCA Mean recall F-Score
256 70.36 65.03 67.59
512 75.69 69.70 72.57
1024 67.69 44.08 53.48
2048 62.03 38.54 47.55

Ensemble 82.11 72.50 77.01

sample the images, as such the scales do not form a Gaussian Pyramid. Because the

highest scale is not blurred in either case these results are identical, and are produced

by the same network.

Furthermore, we report the pair-wise correlations between the Class Accuracy (CA)

for each artist for the four different scales for both approaches. The pair-wise correla-

tions between scales indicates the similarity of the performance for individual artists

at those two scales. A high correlation indicates that the attributions of an artist are

largely the same at both scales, whereas a low correlation indicates that the artworks

of an artists are classified differently at the two scales which suggests the relevance of

scale-specific information.

3.6 Results

The results of each individual scale-specific CNN of the multi-scale CNN and the en-

semble averages are reported in Table 3.2. The best-performing single scale is 512.

The ensemble-averaged score of the multi-scale CNN outperforms each individual scale

by far. As is evident from Table 3.3, no combination of three or fewer scales outper-

forms the multi-scale (four-scale) CNN. We report the results obtained by multi-scale

training [124] in Table 3.4.

The MCA and mean recall obtained for the resolutions greater than 512 decrease,

this suggests that there is a ceiling in performance and that further increasing the res-

olution would not help to improve the performance. Yet, combining the predictions

from each scale in an ensemble results in a boost in performance. The pair-wise cor-
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Table 3.3: Mean Class Accuracies for all possible scale combinations obtained with our approach, a ‘+’
indicates inclusion of the scale. In bold are the combinations which lead to the best combined performance
in each block. The best overall score is underlined.

256 512 1024 2048 MCA Mean recall F-Score
+ 70.36 65.03 67.59

+ 75.69 69.7 72.57
+ 67.96 44.08 53.48

+ 62.03 38.54 47.55

+ + 78.06 71.61 74.69
+ + 75.92 67.65 71.54
+ + 76.24 67.92 71.84

+ + 79.15 67.71 72.98
+ + 80.21 68.11 73.66

+ + 71.41 45.4 55.51

+ + + 80.15 72.14 75.94
+ + + 80.87 72.47 76.44
+ + + 79.27 68.89 73.72

+ + + 80.95 65.9 72.66

+ + + + 82.12 72.5 77.01

Table 3.4: Mean Class Accuracies for all possible scale combinations using the Mean-scale training proce-
dure described in [124], a ‘+’ indicates inclusion of the scale. In bold are the combinations which lead to
the best combined performance in each block. The best overall score is underlined.

256 512 1024 2048 MCA Mean recall F-Score
+ 70.56 65.74 68.07

+ 73.5 68.36 70.84
+ 65.63 57.96 61.56

+ 62.03 38.54 47.55

+ + 75.93 71.02 73.4
+ + 75.13 70.2 72.58
+ + 75.68 68.08 71.68

+ + 74.8 68.51 71.51
+ + 77.8 66.2 71.53

+ + 68.7 54.69 60.9

+ + + 78.21 72.94 75.48
+ + + 79.16 71.95 75.38
+ + + 77.72 70.54 73.95

+ + + 77.04 66.65 71.47

+ + + + 79.98 73.02 76.34

relations between scales as reported in Table 3.5 show larger correlations for adjacent

scales than for non-adjacent scales. This pattern of correlations agrees with the causal
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Table 3.5: Correlations between results per artist for each image scale

256 512 1024 2048
256 1.00 0.56 0.27 0.18
512 0.56 1.00 0.44 0.29
1024 0.27 0.44 1.00 0.54
2048 0.18 0.29 0.54 1.00

Table 3.6: Correlations between results per artist for each image scale using multi-scale training [124].

256 512 1024 2048
256 1.00 0.60 0.33 0.26
512 0.60 1.00 0.52 0.35
1024 0.33 0.52 1.00 0.40
2048 0.26 0.35 0.40 1.00

connection of adjacent scales (i.e., a lower scale image is directly derived from the ad-

jacent higher scale image. Additionally, we also report the correlations between the

scales using multi-scale training (cf. [124]) in Table 3.6. We note that in general the

correlations in the latter case are stronger than the former, which shows that there is

a greater performance difference across artists between scales for our approach, which

indicates that the single-scale CNN for our approach learn a greater variety of scale-

variant features.

To provide some insight into the artist-specific relevance of the four different scales,

Table 3.7 lists the top five artists with the least and most variation between scales as

determined by the standard deviation of their MCA across scales. From this table it

can be observed that there is a large variation between artists in terms of which scales

work well, where for some artists performance is highly scale-specific (a perfect per-

formance is achieved on one scale and a completely flawed performance on another),

and for others performance does not depend on scale (the performance is stable across

scales).

To illustrate the effect of resolution on the automatic detection of artist-specific fea-

tures, Guided Backpropagation [108] was used to create visualisations of the artwork

‘Horse-smith with a donkey’ by Jan de Visscher at the four scales. Figure 3.7 shows

the results of applying Guided Backpropagation to the artwork. The visualisations
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Table 3.7: Overview of artists with the least and most variation between scales, and their MCA per scale.

Top five artists with least variation between scales.
Artist 256 512 1024 2048
Johannes Janson 66.67 65.12 67.74 65.22
Pieter de Mare 80.0 82.67 86.0 81.25
Jacobus Ludovicus Cornet 73.53 76.47 73.33 79.17
Cornelis van Dalen (II) 100.0 94.44 100.0 100.0
Lucas Vorsterman (I) 85.42 89.8 83.67 88.57

Top five artists with most variation between scales.
Artist 256 512 1024 2048
Joannes van Doetechum (I) 100.0 100.0 0.0 0.0
Totoya Hokkei 100.0 0.0 0.0 0.0
Gerrit Groenewegen 88.89 100.0 100.0 0.0
Abraham Genoels 86.67 64.29 0.0 0.0
Charles Meryon 64.0 86.67 100.0 0.0

(a) Artwork at 256 (b) Activation (c) Artwork at 512 (d) Activation

(e) Artwork at 1024 (f) Activation (g) Artwork at 2048 (h) Activation

Figure 3.7: Visualisations of the activations for the artwork ‘Horse-smith with a donkey’ by Jan de Viss-
cher at four scales. The activation shows the importance of the highlighted regions for correctly identifying
the artist, the colours have been contrast enhanced for increased visibility. Best viewed in colour.

show the areas in the input image that the network considers characteristic of Jan de

Visscher for that scale. A clear shift to finer details is observed when moving to higher

resolutions.

As the multi-scale CNN produces a prediction vector for each image we are able to

calculate the similarity of the artworks in terms of the distance in a high-dimensional
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space. Using t-SNE [117] we visualise these distances in a two-dimensional space in

Figure 3.8, the spatial distance indicates the similarity between images at determined

by the ensemble. The t-SNE visualisation of the distances shows a clear clustering of

similar artworks, in terms of shape, colour, and content.

From these visualisations we can observe that the multi-scale representation is able

to express the similarities between artworks in terms of both fine and coarse character-

istics. Moreover, multi-scale representation makes it possible to express the similarity

between artworks which are only similar on some scales (i.e., if only the fine, or only

the coarse characteristics are similar), as shown in Figure 3.8.

3.7 Discussion

In this work we explored the effect of incorporating scale-variance, as put forward by

Gluckman [35], in CNN and how it can be used to learn deep image representations

that deal well with variations in image resolution, object size, and image scale. The

main idea behind scale-variance is that decomposing an image in scale-invariant com-

ponents results in an incomplete representation of the image, as a part of the image

structure is not scale-invariant. As stated in Section 3.1 Gluckman showed that image

classification performance can be improved by using the scale variant image structure.

This means that a good multi-scale image representations is capable of capturing both

the task-relevant scale-variant and scale-invariant image structure. To this end we pre-

sented an approach for learning scale-variant and scale-invariant representations by

means of an ensemble of scale-specific CNN. By allowing each scale-specific CNN to

learn the features which are relevant for the task at that scale, regardless whether they

are scale-invariant or not, we are able to construct a multi-scale representation that

captures both scale-variant and scale-invariant image features.

We demonstrated the effectiveness of our multi-scale CNN approach on an artist

attribution task, on which it outperformed a single-scale CNN and was superior to the

state-of-the-art performance on the attribution task. Furthermore, we show that the

best performance is achieved by combining all scales, exploiting the fact that scale-

64



specific attribution performance varies greatly for different artists.

Is a multi-scale approach really necessary? Our approach requires multiple scale-

specific CNNs, which may be combined into a single more sophisticated CNN which

acquires coarse- to fine-grained features, using high resolution images. However, such

a network would have to be significantly deeper and more complex than the network

used in this chapter. This would increase the computational cost for training and the

amount of training data that is needed beyond what is practically feasible at this time.

Therefore, we cannot rule out that a single sophisticated CNN may obtain a similar

performance as our multi-scale CNN. Moreover, we suspect that such a single-scale

network will struggle with coarse characteristics which are very dissimilar when ob-

served at a fine scale, but very similar on a coarse scale, as the coarse scale analysis is

conditioned on the fine scale analysis. Therefore, we expect that a single very complex

CNN will not work as well as our multi-scale CNN.

Additionally, we compared our approach to Multi-scale training [124] and showed

that construction a Gaussian Pyramid of the input increases performance and de-

creases the correlations between scales. While constructing the Gaussian Pyramid

increases the computational load slightly, we believe that the reduced correlations be-

tween scales implies that our approach is better at capturing the scale variant charac-

teristics, and is subsequently able to leverage these for increased performance.

Compared to previously proposed CNN architectures that deal with scale-variation,

our approach requires many more model parameters, as the parameters are not shared

between the single-scale CNN. However, we consider this a key attribute of the ap-

proach as it enables the model to learn scale-variant features, and moreover, because

the parameters are not shared the models can be trained independently and in parallel.

Despite this, a potential downside of our approach is that we do not explicitly learn

scale-invariant features, while they might implicitly emerge from the training proce-

dure, future work on how to explicitly learn scale-variant and scale-invariant features

is needed.

We expect that the use of multi-scale CNNs will improve performances on image

65



recognition tasks that involve images with both fine and coarse-grained task-relevant

details. Examples of such tasks are scene classification, aerial image analysis, and

biomedical image analysis.

3.8 Conclusion

There is a vast amount visual information to be gleaned from multi-scale images in

which both the coarse and the fine grained details are represented. However, captur-

ing all of this visual information in a deep image representation is non trivial. In this

chapter we proposed an approach for learning scale-variant and scale-invariant repre-

sentations from high-resolution images. By means of a multi-scale CNN architecture

consisting of multiple single-scale CNN, we exploit the strength of CNN in learning

scale-variant representations, and combine these over multiple scales to encourage

scale-invariance and improve performance. We demonstrated this by analysing the

large amount of available details in multi-scale images for a computational artist at-

tribution task, improving on the current state-of-the-art.

Moreover, we found that the representations at the various scales differ both in per-

formance and in image structure learnt, and that they are complementary: averaging

the class posteriors across all scales leads to optimal performance. From these find-

ings we may conclude by stating that encouraging the combined development of scale-

invariant and scale-variant representations in CNNs is beneficial to image recognition

performance for tasks involving image structure at varying scales and resolutions and

merits further exploration.
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Figure 3.8: t-SNE plot of all artworks in the test set where spatial distance indicates the similarity as ob-
served by the network. Zoomed excerpts shown of outlined areas, illustrating examples of highly similar
clusters.
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4
A learned representation of artist specific

colourisation

This chapter has been previously published as: N. van Noord, E. Postma (2017). A learned representa-

tion of artist specific colourisation. ICCV Workshop on e-Heritage.



Abstract

The colours used in a painting are determined by artists and the pigments they had

at their disposal. Therefore, knowing who made the painting should help in determin-

ing which colours to hallucinate when given a colourless version of the painting. The

main aim of this chapter is to determine if we can create a colourisation model for

paintings which generates artist-specific colourisations. Building on earlier work on

natural-image colourisation, we propose a model capable of producing colourisations

of paintings by incorporating a conditional normalisation scheme, i.e., conditional in-

stance normalisation. The results indicate that a conditional normalisation scheme

is beneficial to the performance. In addition, we compare the colourisations of our

model that is trained on a large dataset of paintings, with those of competitive models

trained on natural images and find that the painting-specific training is beneficial to

the colourisation performance. Finally, we show the results of stylistic colour transfer

experiments in which artist-specific colourisations are applied to the artworks of other

artists. From our findings we may conclude that painting colourisation is feasible and

benefits from being trained on a dataset of paintings and from applying a conditional

normalisation scheme.
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4.1 Introduction

Image colourisation is the task of hallucinating a colour image given a greyscale image.

This task is clearly underconstrained in that a pixel with a given greyscale value can

be assigned a number of different colours. Nonetheless, for most natural images there

are colours which are much more likely than others, e.g., given a tropical beach scene

we can all imagine that the sky and water are blue, the sand a light tan, and the palm

leaves green. In other words, the semantics of the image region impose constraints

on what would be plausible colours. If we are able to recognise what is depicted, we

may be able to suggest a plausible colourisation. Recent work has shown that Convo-

lutional Neural Networks (CNN) can obtain sufficient visual understanding to perform

automatic image colourisation [72, 133, 23, 48, 51].

Depending on the type of image other factors than the image semantics might play

a role in determining the likelihood of colours. For paintings the idiosyncratic use of

colours by the artist greatly influences the likelihood of colours. While (realistic) paint-

ings are often intended as realistic representations of natural scenes, the geographical,

historical, and economical availability of colourants might have restricted the artist’s

use of colour. Additionally, and maybe more important to painters, their choice of

colours is often guided by aesthetic considerations [86]. As such we pose that due to

the inherent complexity of colouring paintings it is necessary to take into account both

the image semantics, and the artist’s palette. An example of the influence the artist’s

palette has on the used colours can be seen in Figure 4.1, showing two similar scenes,

one with realistic colours and the other with seemingly unrealistic colours.

An image colourisation model might learn to take the artist’s palette into account

in the following two ways. The first way of taking the artist’s palette into account is

by acquiring a model of the artist’s style. Previous work has shown that CNNs are ca-

pable of acquiring a model of the artist’s style [120]. Therefore, the model could learn

to recognise which visual content is artist-specific, and use this to facilitate artist-

specific colourisation. The second way of taking the artist’s palette into account, is
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(a) “View in the Woods” (b) “Evening; Red Tree”

Figure 4.1: Examples of two paintings depicting a similar scene, but with very different colour usage.
Left is “View in the Woods” (“Bosgezicht”) by Jan van Kessel (courtesty of the Rijksmuseum) and right
“Evening; Red Tree” (“Rode boom”) by Piet Mondrian (courtesy of the Gemeentemuseum Den Haag).

to condition (part of) the CNN on the artist, and explicitly enforce that it acquires an

artist-specific mapping.

In this chapter, we compare these two approaches for producing artist-specific colouri-

sations of paintings. Our results indicate that explicitly conditioning the network makes

it possible to influence the colourisation, but that surprisingly even without this ex-

plicit signal the network is able to hallucinate plausible colours.

The remainder of this chapter is organised as follows. Section 4.2 reviews previous

work on image colourisation, normalisation, and computational art analysis. In Sec-

tion 4.3 we describe the details of our approach. Followed by Section 4.4 in which the

results are presented, as well as a number of qualitative comparisons of the colourisa-

tion results for various models. In Section 4.5 we discuss several questions which arose

during this work. Finally, in Section 4.6 we conclude by stating that the approach pre-

sented is capable of producing highly diverse visually appealing colourisations of paint-

ings.
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4.2 Previous work

This section reviews earlier work pertaining to our colourisation approach: image colouri-

sation, normalisation, and computational art analysis. Finally, our contributions are

explained.

4.2.1 Image Colourisation

Work on image colourisation can be divided into user-based approaches and fully auto-

matic approaches. User-based approaches rely on interaction (e.g., provide scribbles or

reference images) with the user, whereas fully automatic approaches aim to provide a

colourised image without user interaction, see [15] for a comprehensive overview.

Recent work on fully automatic image colourisation has shown that Convolutional

Neural Networks (CNN) are capable of producing visually appealing colourisation re-

sults [72, 133, 23, 48, 51]. CNN-based fully automatic approaches can be categorised

into two groups: (1) per-pixel descriptor approaches [21, 72] and (2) encoder-decoder

type architectures [48, 133, 23, 51]. The per-pixel descriptor approach consists of pass-

ing the input image through a (pretrained) CNN and extracting a hypercolumn de-

scriptor [41] for each pixel. The per-pixel descriptors are subsequently fed to a clas-

sifier that predicts the colour based on the descriptor. Hypercolumns describe the

region around the pixel at different scales, incorporating a large amount of context,

which results in accurate predictions. However, densely extracting hypercolumns from

an image is very memory intensive, making it expensive to train an end-to-end sys-

tem. Larsson et al. [72] propose to extract the hypercolumns from a subset of ran-

domly chosen locations, but only show that this works for fine-tuning a network, not

for training a network from scratch.

In contrast, so called encoder-decoder architectures have shown very promising re-

sults when trained from scratch [51]. Typically, this type of architecture consists of an

encoder which follows a traditional CNN layout, i.e., several layers which have an in-

creasing number of filters and a decreasing spatial resolution. Followed by a decoder
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which either upsamples using interpolation (e.g., nearest-neighbour, bilinear, or bicu-

bic), or deconvolution (i.e., fractional strided convolution) [131]. Encoder-decoder ar-

chitectures are trained in either a Generative Adversial setting [51], or with a pixel-

wise loss [48, 133, 23].

4.2.2 Normalisation

Most modern CNNs make use of Batch Normalisation (BN) for each nonlinear unit in

the network. BN reduces internal covariate shift (changes in the distribution of the

inputs for a layer, due to weight updates in preceding layers) and accelerates training

[50]. Given a batch of size T , BN normalises each channel c of its input x ∈RT×C×W×H

such that it has zero-mean and unit-variance. Formally, BN is defined as:

ytijk = γi

(
xtijk − µi

σi

)
+ βi. (4.1)

where µi and σi describe the mean and standard deviation for channel Ci across the

spatial axes W and H, and the batch of size T . Additionally, for each channel there is

a pair of learned parameters γ and β, that scale and shift the normalised value such

that they may potentially recover the original activations if needed [50]. BN is applied

in a different way during training and testing. Ideally we would calculate µi and σi on

the whole dataset prior to training, but as they depend on the incrementally learned

weight values of preceding layers this is not possible. Instead, during training µi and

σi are calculated on the actual batch and added to moving averages. The resulting

averages are used during testing.

In recent work on style transfer, it was shown that accounting for instance-specific

contrast improves generation results [114]. The approach, called Instance Normalisa-

tion (IN), modifies BN in the following two ways: (1) IN calculates µi and σi for each

specific instance rather than for the entire batch as in BN. (2) IN does not maintain

moving averages, and is applied identically during training and testing. We expect

that IN might also be beneficial for painting colourisation, or even image colourisa-
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tion in general, because uniform contrast changes should not alter the colourisation

substantially. Moreover, a dataset of paintings consists of samples generated from dif-

ferent distributions (i.e., painters), as such we expect it is very unlikely that a single

mean and variance are sufficient to adequately normalise the activations without intro-

ducing artifacts.

More recently, there has been work on extending feedforward style transfer [62] to

deal with multiple styles by conditioning the shifting and scaling parameters on the

style [25]. Conditional Instance Normalisation (CIN) modify IN such that the γ and

β parameters are N × C matrices rather than length C vectors, where N is equal

to the number of styles being modelled. In this work we will use CIN to modify the

colour use of different artists, by conditioning the shifting and scaling parameters on

the artist.

4.2.3 Computational art analysis

There is large and growing body of work on the computational analysis of artworks

[59, 66, 120]. While a large portion of this work is concerned with learning character-

istics of artists for classification, an increasing body of work is emerging which tries to

capture artist-specific characteristics for generative purposes [30, 114, 25]. This latter

type of work, is generally concerned with style transfer (i.e., given a style image S and

a content image C produce a single image with style Sstyle and content Ccontent). In

this work we are only concerned with the colour aspects of the style.

4.2.4 Our Contributions

In this work we make the following three contributions: (1) We present an image colouri-

sation model∗ building on components from previous works, which we apply and eval-

uate on a dataset of paintings. (2) We compare various normalisation schemes, inves-

tigating the influence of batch versus instance normalisation, and conditional versus

unconditional normalisation. (3) We show that the models using conditional and ‘un-
∗https://github.com/Nanne/conditional-colour

75

https://github.com/Nanne/conditional-colour


conditional’ instance normalisation utilise their visual understanding of image regions

in an artist-specific way, resulting in visually appealing and diverse colourisations of

paintings.

4.3 Method

In this work we use a ‘encoder-decoder’-style convolutional neural network to perform

end-to-end colourisation of paintings, with the additional goal of learning the artist’s

unique palette. To explicitly learn the artist’s palette, or colour use, we add Condi-

tional Instance Normalisation (CIN) to the network, where the γ and β parameters

are conditioned on the artist.

4.3.1 Loss

For image colourisation the goal is to learn a mapping Ŷ = F (X) from a greyscale

image X ∈ RH×W to a colour image Y , where the pixel lightness values are taken to

represent the greyscale image, and H,W are the image width and height respectively.

Typically, colour images are represented in RGB colour space that combines colour

information with luminance (intensity) information, luminance is encoded in the mean

of the R, G, and B channels.

For image colourisation the CIE Lab colour space is more appropriate, because it

represents luminance (L) as a channel separate from the two colour channels a and

b. Colourisation in Lab colour space means mapping the L channel of an image to

the Lab channels. In CIE Lab, a represents colours along the red-green axis and b

along the blue-yellow axis. Both CIE Lab colour values are continuous valued. Hence,

colourisation could be formulated as a regression task. However, previous work has

shown that formulating colourisation as a regression task tends to result in desatu-

rated colours [72, 133]. This is most likely due to the tendency of regression to favour

the mean when dealing with a multimodal distribution across colours, i.e., if a colour

regression model is trained on a database of t-shirts, where half of the t-shirts are com-

pletely white, and the other half are completely black it will probably favour grey at
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test time.

A common solution to deal with this limitation of regression is to reformulate the

task as a classification task, by discretising the target, and effectively predicting a

histogram across colour bins for each pixel. We discretise the a and b channels sepa-

rately by binning the axes with Q equal-width bins, where we set Q = 32 following

[72]. Therefore, Y becomes a four dimensional matrix Y ∈ [0, 1]H×W×Q×2, and the loss

effectively becomes the sum of the cross entropy loss for both the a and the b channel.

4.3.2 Class rebalancing

Zhang et al. [133] show that during training it is possible to re-weight the loss at each

pixel, following an approach akin to sample weighting. The loss at each pixel is re-

weighted based on a weighting factor determined by the rarity of the target colour.

This approach prevents the loss function from being dominated by highly common

colours and is similar to the approach described in [23].

Following the procedure described in [133] we estimate the empirical probability

distribution of colours in the discretised space p ∈ ∆Q on the training set, which is

smoothed with a Gaussian kernel Gσ. Subsequently, the contribution of the probability-

weighted distribution is parameterised by λ ∈ [0, 1]. More formally, Zhang et al. [133]

define the weighting factor w ∈ RQ as:

w ∝
(
(1− λ)(Gσ ◦ p) + λ)−1 (4.2)

Unlike [133] we have discretised the a and b channels separately, therefore we also

have separate losses for the a and b channels. Subsequently, we weight the channels

independently using weighting factors wA and wB respectively. We used the values of

λ = 1
2 and σ = 5 following [133].
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Figure 4.2: Visualisation of the network architecture. Conv refers to a convolution layer, and Up to an
upsampling layer. The network input is 224 × 224 and the output is 224 × 224 × 2Q. The bottom arrows
between matching layers in the encoder and decoder indicate skip connections. Skip connections differ from
regular connections in that they are concatenated to the output of the matching layer, integrating lower-
level features at a higher spatial resolution to upsampled higher-level features.

4.3.3 Network architecture

The network architecture used for our colourisation model is based on the “U-Net”

architecture[94] used in [51], and is shown in Figure 4.2. The U-Net architecture is

an encoder-decoder architecture with skip connections between matching layers in the

encoder and the decoder. The skip connections enable a direct mapping between lay-

ers at the same spatial scale. This allows the encoder-decoder path of the network to

model the mapping from the grey values to colours, without being responsible for a

reconstruction of all image details. We modified U-Net by replacing the upsampling

(de)convolution layers with upsampling by means of nearest-neighbour interpolation,

followed by a convolutional layer, as described in [25]. This upsampling method helps

to avoid high spatial frequency noise [25] and ‘Checkerboard’ artifacts [87]. The filter

size for all convolutional layers was set to 4 × 4, and all convolutional layers in the en-

coder use a stride of 2. All layers use a ReLU nonlinearity, except the last layer which

is followed by a softmax activation function.

The network outputs a colour histogram for each pixel, to convert this to an ac-

tual colour we take the ‘expectation’ over the histogram, i.e., the weighted sum of the

colour bins [72]. This results in smooth colour transitions and avoids the discontinu-

ities obtained when taking the colour of the highest bin.
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4.3.4 Training details

For training we use ADAM [70] (α = 0.001, β1 = 0.9, β2 = 0.999), and all the weights

are initialised using Xavier weight initialisation [34]. In terms of data augmentation

we perform random horizontal flips, take 224 × 224 pixel crops, and introduce a ran-

dom uniform brightness shift on the L channel in the interval [−d, d). The value of d

was chosen to be smaller than noticeable to human observers i.e., the colour difference

(∆E) was smaller than 1 [103].

4.4 Experiment

To evaluate our colourisation model we compare the performances of the following

seven approaches on a painting dataset.

1. Greyscale - Baseline using greyscale versions of images (i.e., original L channel
and ab channels set to 0).

2. Larsson et al. [72] - A CNN based approach using sparse hypercolumns trained
on natural images.

3. Zhang et al. [133] - An encoder-decoder style network trained on natural im-
ages and paintings.

4. BN - Our model using Batch Normalisation trained on paintings.

5. IN - Our model using Instance Normalisation trained on paintings.

6. CIN - Our model using Conditional Instance Normalisation trained on paintings,
conditioned on 1.678 artists.

7. Randomised-CIN - Our model with Conditional Instance Normalisation, using
a random artist rather than the actual. If conditioning on the artist works then
we would expect this to perform worse than our CIN model.

For each of the seven approaches, we compute the root mean square error (RMSE)

across all pixels in ab space, and the peak signal to noise ratio (PSNR) in RGB space

per image, following [72]. The greyscale approach functions as a baseline by providing

no colourisation, i.e., all zero ab values.
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The second and third approach (by Larsson et al. and Zhang et al.), are originally

trained on a dataset of natural image (the ImageNet dataset) [96], and not on paint-

ings. Both approaches incorporate copies of the first layers from a trained VGG-16

model [105], and are state-of-the-art (natural) image colourisation models. To com-

pare the influence of the training data we fine-tune model† by Zhang et al. [133] on

our painting dataset. There are two motivations for fine-tuning, (1) the performance of

the models trained on natural images show how well such models generalise to paint-

ings. (2) Fine-tuning the model allows us to compare the benefits of training on paint-

ings, and how our model compares to this model in a comparable setting. For the four

variations of our model the scores reveal the effectiveness of the different normalisa-

tion schemes, where the randomised-CIN is used as an extra validation of the CIN

model. If the randomised-CIN model performs worse than the CIN model we can in-

fer that the conditioning is effective. In addition, we perform qualitative evaluations of

the best performing colourisation approach and demonstrate the transfer of the colour

style of one artist onto an artwork of another artist.

In the remainder of this section we will introduce the dataset used for the experi-

ment, and present the results the different approaches obtain.

4.4.1 Painting colourisation dataset

The painting colourisation performances is evaluated on the “Painters by Numbers”

dataset as published on Kaggle‡. This dataset is a collection of images collected from

different sources, though the majority was retrieved from “Wikiart” a repository which

was used in a number of previous publications involving computational artwork analy-

sis [97, 99]. Compared to the Rijksmuseum Challenge dataset used in Chapters 1 and

2 this dataset contains mostly paintings, and is subsequently much more colourful,

making it more suited for colourisation.

A portion of the images included in this dataset are colourless or contain very lit-
†We were unable to perform any type of training with the model by Larsson et al.
‡https://www.kaggle.com/c/painter-by-numbers
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tle colour. For most of these images this is because they are drawings on paper, and

while the paper might not be purely white, a greyscale prediction would often be very

close to the ground truth. Nevertheless, we chose to keep these images in the dataset

as we feel they are inherent to the task, and fine-tuning the cut-off point for how much

colour is desirable might arbitrarily influence the task.

From the “Painters by Numbers” dataset we select the subset of artists who have

at least 5 artworks in the dataset, which results in a dataset consisting of 101, 580

photographic reproductions of artworks produced by a total of 1, 678 artists. Subse-

quently we divide the dataset into a training, validation, and test set used for training

the model, evaluating stopping criteria, and reporting evaluation performances, respec-

tively. Both the test and validation set consist of 5000 images obtained by stratified

random sampling.

4.4.2 Painting colourisation

In this subsection the results on the main image colourisation task in this work are de-

scribed. All results are measured using the root mean square error (RMSE) averaged

across all pixels in ab space, and the peak signal-to-noise ratio (PSNR) per image in

RGB space, following [72].

Results of the comparison between the seven approaches described in Section 4.4 in

Table 4.1 show that our model achieves the highest performance according to RMSE.

On this dataset all models score below the PSNR baseline, despite our model achiev-

ing the highest performance of all models. We suspect that the high PSNR for the

baseline is an artifact of the colourless images in the dataset, and the calculation of

this metric in RGB space. Nevertheless, we pose that the metric remains useful to

compare performance between approaches.

Our model outperforms the baseline regardless of the normalisation scheme, and it

outperforms the two previous colourisation approaches (by Larsson et al. and Zhang

et al.) regardless of whether they were trained on natural images or fine-tuned on

paintings. Nonetheless, there are differences in performance between the normalisa-
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Table 4.1: Painting colourisation results measured using RMSE across all pixels, and PSNR in RGB space.
A good reconstruction has a low RMSE, and a high PSNR. “Greyscale” is a baseline which provides no
colourisation.

Method RMSE PSNR
Greyscale 0.175 24.66
Trained on natural images
Larsson et al. [72] 0.168 22.18
Zhang et al. [133] 0.163 22.29
Fine-tuned on paintings
Zhang et al. [133] 0.175 21.65
Trained on paintings
BN 0.146 23.26
IN 0.149 23.31
CIN 0.145 23.34
Randomised CIN 0.164 22.31

tion schemes. With CIN performing slightly better than IN and BN, both in terms of

RMSE and PSNR. Moreover, from the comparison between CIN and randomised-CIN

we can learn that conditioning on the correct artist is important, in that using a ran-

dom artist results in a deteriorated performance, which demonstrates that the CIN

model learns to colourise in an artist-specific manner.

For a qualitative comparison between our models we show three sets of the colouri-

sation results, the first set in Figure 4.3 shows the best case performance, the second

set in Figure 4.4 the worst case, and the third set in Figure 4.5 the expected perfor-

mance. These sets were created based on the RMSE obtained by the best performing

model (Ours CIN). In Figure 4.3 we show the colour paintings in the best case. The

best performances were obtained for a few natively greyscale paintings/drawings con-

tained in the dataset. These will be discussed separately. The presence of these paint-

ings/drawings is presumably also the cause for the high PSNR for the greyscale base-

line.

When comparing the colourisations in Figure 4.3 we can observe that all three nor-

malisation schemes produce plausible colourisations, despite not always exactly match-

ing the ground truth. It appears that the IN and BN model produce colours which are

more typical for the entire dataset, whereas CIN produces colours which closer match
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Original Input CIN IN BN

Figure 4.3: Example colourisation results on Painters by Numbers. Colour images with lowest RMSE ac-
cording to our CIN model.

the original: a more saturated red in the first row, greys/silvers instead of browns in

the third row, and a yellow sky rather than a blue sky in the last row. These results

are in line with what we would expect as differences between these models.

The cases for which we obtain the highest RMSE are those shown in Figure 4.4. For

these (abstract) artworks there appears to be little to no visual semantics that provide

clues about the colours used. The experimental use of colour by abstract artists such

as Mark Rothko (in the second row) makes colourisation virtually impossible.

In order to see the expected performance of the CIN model we present the images
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Original Input CIN IN BN

Figure 4.4: Example colourisation results on Painters by Numbers. Shown examples have the highest
RMSE according to our CIN model.
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Original Input CIN IN BN

Figure 4.5: Example colourisation results on Painters by Numbers. Shown examples were randomly sam-
pled from around the median RMSE for our CIN model.

shown in Figure 4.5, which were randomly sampled from around the median RMSE.

These images show that the colourisations for both CIN and IN are very consistent

with the original, although all models predict the jacket in the artwork on the second

row to be red rather than blue. However, given that there is no indication in the input

which colour it should be, and either colour is equally plausible we would consider this

a good colourisation. The colourisations produced by BN are not far behind, though

they seem to be less spatially consistent.

In Figure 4.3 we showed the colour images for which the CIN model obtained the

lowest RMSE. As stated, the lowest RMSE scores were obtained for the natively greyscale

images shown in Figure 4.6. The best hallucination for natively greyscale paintings

and drawings, is reproduction of the input input (with potentially a slight uniform hue

change). It appears all models are able to learn to generate a greyscale reproduction,

though with slight differences in hue. In hindsight, we could have removed the na-
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Original Input CIN IN BN

Figure 4.6: Example colourisation results on Painters by Numbers. Images with lowest RMSE according to
our CIN model.

tively colourless or almost colourless artworks from the Painters by Numbers dataset

to make the colourisation task more consistent. However, deciding where to place the

threshold on how colourful an artwork needs to be is rather subjective and beyond the

scope of this research.

For qualitative comparison between our best performing model (CIN) and the mod-

els by Larsson et al. [72] and Zhang et al. [133], we present two comparisons of colouri-

sations. First, in Figure 4.7 we show three images for which the absolute difference in

RMSE between our CIN model and the Larsson et al. [72] model is the largest. From

these images we can observe that this mainly concerns abstract artworks for which a

human observer would have difficulty picking the most plausible colourisation. Since,

our CIN model has artist-specific information, it can produce a reasonable colour, de-

spite the lack of semantic information in the image.

For the second comparison between our model and previous work, we show three

images randomly sampled from around the median RMSE as obtained by the model

by Larsson et al. [72] in Figure 4.8. The first row shows an example of a scene for

which is easily recognised by humans, yet the approaches produce widely varying re-

sults. The approaches of Larsson [72] and Zhang [133] seem to generate desaturated
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Original Input CIN Larsson [72] Zhang [133]

Figure 4.7: Example colourisation results on Painters by Numbers. Images where our CIN model outper-
forms [72] with the biggest RMSE difference.
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Original Input CIN Larsson [72] Zhang [133]

Figure 4.8: Example colourisation results on Painters by Numbers. Shown examples were randomly sam-
pled from around the median RMSE for the model by Larsson et al.[72]

colourisations due to an imperfect recognition of the visual contents. Whereas the CIN

model produces a fairly realistic colourisation. The second row shows an example of

successful recognition of the visual contents, which result in more plausible colourisa-

tions by all three models. For the last row all three approaches produce results which

differ strongly from the ground truth, the approaches by Larsson and Zhang produce

very desaturated images, yet our model produces a highly saturated image. We sus-

pect this is due to the strong influence of the conditioning on the artist, as the colouri-

sation resembles the artist’s style (Piet Mondrian, see Figure 4.1b).

4.4.3 Stylistic colour transfer

In the previous section we have shown that the performances of normalisation schemes

are very similar. For generative purposes, the CIN model has an additional advantage

in that we can choose in which colour style to render the artwork. As a result, we can

88



transfer the colour style of one artist onto an artwork of another artist. In this sec-

tion we perform a qualitative comparison of a number of artworks on which we ap-

plied stylistic colour transfer. As the sources for our colour transfer experiments, we

selected the colour styles of Maria Primachenko and Mark Rothko, because of their

prominent use of colour. Note that this approach differs from what is commonly re-

ferred to as colour transfer, in that we learn the style of an artist from a database of

images, rather than from a single reference image [93].

The stylistic colour transfer visualisations can be found in Figure 4.9. These columns

(from left to right) show the original artwork in colour, the greyscale input to the model,

a colourisation produced conditioned on the actual artist, a colourisation conditioned

on Maria Primachenko, and a colourisation conditioned on Mark Rothko.

The first row shows an artwork by Roy Lichtenstein. The colourisation conditioned

on his colour style is not very close to the original. Still, it does match the colour palette

of many of his other artworks. The colourisation conditioned on Maria Primachenko

is much more yellow, with some purple highlights. The colourisation conditioned on

Mark Rothko is mainly in shades of red and orange. A similar pattern can be observed

in the next row for the colourisations of an artwork by Marc Chagall, where again the

colourisation differs from the original but matches that of the colour palette seen in

other artworks by Marc Chagall. In the last row an artwork by Louisa Matthiasdottir

is shown, here the colourisation closer matches the original, but similarly to the other

examples the stylistic colour transfer results differ greatly from the original and the

colourisation.

For all artworks we can observe that the three colourisations differ strongly, illus-

trating the artist-specific effect of the CIN model.

4.5 Discussion

The main aim of this chapter was to determine if we can create a colourisation model

for paintings which can deal with the inherent complexity of the task due to the influ-

ence of both image semantics and the artist’s palette. Our results indicate that auto-
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Figure 4.9: Stylistic colour transfer results. For three greyscale images we show the colourisation results
of conditioning on the actual artist (third column) on Maria Primachenko (fourth column), and on Mark
Rothko (last column).
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matic colourisation models can produce plausible colourisations for paintings, and that

performing the colourisation in an artist-specific manner appears beneficial. In what

follows, we discuss (1) artist-specific colourisation, (2) normalisation schemes, (3) the

use of paintings (rather than natural images) for training a colourisation model, and

(4) evaluation of painting colourisation models.

(1) Artist-specific colourisation. We aimed to learn a representation of the artists

colour usage such that we could do artist-specific colourisation. We compared an ap-

proach to do this explicitly (CIN) with two approaches which might be able to do this

implicitly (BN and IN). Our results show that while the CIN approach can be used

to explicitly alter the colourisation, the IN (and to a lesser extent the BN) approach

appear to recognise the artist and use this as an information source for the colourisa-

tion. Therefore, we pose that the minor difference in performance between CIN and

IN is due to the ability of the IN approach to recognise the artist or the art style to a

sufficient extent, such that it is not necessary to explicitly pass this as a signal to the

network.

(2) Normalisation Schemes. We found the difference in performance between the

normalisation schemes to be very small. CIN offers some additional functionality in

that we can influence the colourisation, at the cost of extra (conditional) parameters.

Moreover, while in the work of [25] CIN is used to achieve impressive style transfer re-

sults, we pose that the representational power of the scale and shift parameters in CIN

is insufficient to capture the full complexity of an artist’s palette. Therefore, the main

difference between the normalisation schemes seem to come down to saturation levels

and small colour variations. Still, the benefits of CIN are very clear and give a defi-

nite improvement in performance for painting colourisation. It would be worthwhile to

investigate whether this is also the case for other image colourisation tasks.

(3) Use of paintings for training. It could be argued that a painting specific colouri-

sation model is not necessary, as applying realistic colours learned from natural scenes

should be sufficient to produce satisfactory results. Our results indicate that the visual

structure in paintings is different to such a large extent that image colourisation mod-
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els trained on natural scenes only generalise to paintings which are (hyper)realistic,

and do not recognise the structure in more abstract paintings. Our results indicate

that fine-tuning such a network does not help to overcome this, rather that it appears

to worsen the results. Additionally, besides differences in image structure for abstract

paintings, these paintings also tend to use a different palette than found in nature,

making it necessary to train a model specifically for this task. Although the model

used for either task could be a generically applicable model.

(4) Evaluation of painting colourisation. A notable problem for image colourisation

is how to do the evaluation. While quantitative measures, such as the ones used in

this work, given an indication of the performance of the model, they have a number of

pitfalls. These pitfalls mainly concern the bias of these measures to prefer greyscale

over a wrong colour, even when the saturation levels match the ground truth (i.e.,

greyscale is preferred over blue when the ground truth is green). To overcome this, a

number of works have employed user studies [133, 51], or external evaluation by means

of a classification task [133]. For painting colourisation the former is hindered by the

presence of abstract paintings for which naive users have difficulty judging the plausi-

bility. The latter approach leads to incomparable results when applied to our work as

our conditional model receives information about who the artist is, which might give it

an unfair advantage. How to accurately evaluate colourisation models remains an open

question.

4.6 Conclusion

In this work we proposed an image colourisation model capable of producing colouri-

sations of paintings specific to the colour style of an artist. While the model’s per-

formance was demonstrated on paintings and artists, we pose that it is a general ap-

proach which could be applied to a wide variety of image colourisation tasks, as none

of the components are specific to the painting domain. However, we pose that for cul-

tural heritage applications the conditional aspect is most applicable, as there is often

a creative human component which determines the image appearance. In conclusion,
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our model is capable of producing plausible colourisations of paintings, and is highly

diverse when varying the artist on which the colourisation is conditioned.
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5
Light-weight pixel context encoders for image

inpainting

This chapter is based on the article: N. van Noord, E.O. Postma. Light-weight pixel context encoders

for image inpainting. Submitted for publication.



Abstract

In this work we propose Pixel Content Encoders (PCE), a light-weight image inpaint-

ing model, capable of generating novel content for large missing regions in images. Un-

like previously presented convolutional neural network based models, our PCE model

has an order of magnitude fewer trainable parameters. Moreover, by incorporating

dilated convolutions we are able to preserve fine grained spatial information, achiev-

ing state-of-the-art performance on benchmark datasets of natural images and paint-

ings. Besides image inpainting, we show that without changing the architecture, PCE

can be used for image extrapolation, generating novel content beyond existing image

boundaries.
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5.1 Introduction

Reconstructing missing or damaged regions of paintings has long required a

skilled conservator or artist. Retouching or inpainting is typically only done for small

regions, for instance to hide small defects [9]. Inpainting a larger region requires con-

noisseurship and imagination: the context provides clues as to how the missing region

might have looked, but generally there is no definitive evidence. Therefore, sometimes

the choice is made to inpaint in a conservative manner. Take for example the painting

in Figure 5.1, the left bottom corner was filled with a ‘neutral’ colour as to not change

the interpretation of the artwork. However, with the emergence of powerful computer

vision methods specialising in inpainting [14, 18, 91, 49], it has become possible to ex-

plore what a potential inpainting result might look like, without physically changing

the painting.

Although image inpainting algorithms are not a novel development [9, 4], recent

work has shown that approaches based on Convolutional Neural Networks (CNN) are

capable of inpainting large missing image regions in a manner which is consistent with

the context [91, 128, 127, 49]. Unlike, scene-completion approaches [42], which search

for similar patches in a large database of images, CNN-based approaches are capable

of generating meaningful content [91].

A key aspect of CNN-based inpainting approaches and of many CNN architectures

in general [101], is that an image is described at multiple scales by an encoder that re-

duces the spatial resolution through pooling and downsampling. Each layer (or block

of layers) of the network processes the image at a certain scale, and passes this scale-

specific information on to the next layer. This encoding process continues until a sin-

gle low dimensional representation of the image is found, which describes the entire

image. Because this architecture resembles a funnel, the final representation is some-

times referred to as the bottleneck. Figure 5.2 shows a visualisation of two CNN ar-

chitectures; one for classification, and one for image generation (similar to an autoen-
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Figure 5.1: “An old woman of Arles” by Vincent van Gogh (courtesy of the Van Gogh Museum). The left
bottom corner was manually inpainted with a ‘neutral’ colour.

coder). Both architectures encode the image into a bottleneck representation, after

which the classification network processes it with a classifier, typically a softmax re-

gression layer [71], and the image generation network feeds it to a decoder [51]. The

decoder subsequently performs a number of upsampling steps to generate the output

image.

A downside of downsampling in the encoder is the loss of spatial detail - detail which

might be crucial to the task [130]. For inpainting this is most prevalent when consider-

ing the local consistency [49]; the consistency between the edge of the inpainted re-

gion and the edge of the context. A lack of local consistency will result in an obvious

transition from the context to the inpainted region. Although increasing the size of

the bottleneck, i.e., making it wider, appears to alleviate this to some extent [91], it

comes at the cost of a tremendous increase in model parameters. Luckily, recent work

has shown that it is possible to encode an image while preserving the spatial resolu-
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Figure 5.2: Visualisation of a classification CNN architecture (left), and an image generation architecture
(right). In both architectures the encoder downsamples the input into a low(er) dimensional representation:
the bottleneck.

tion [129, 130]. Dilated convolutions make it possible to expand the receptive field of

a CNN, without downsampling or increasing the number of model parameters. We de-

fine the receptive field of a CNN as the size of the region in the input space that affect

the output neurons of the encoder. For instance, a single layer CNN with 3 × 3 filters

would have a receptive field of 3 × 3, adding identical layers on top would increase the

receptive field to 5 × 5, 7 × 7, etc. We refer to Subsection 5.2.2 for an explanation of

how the receptive field of a CNN grows when using dilated convolutions.

Many of the shown results obtained with CNN-based inpainting models, have been

achieved using complex architectures with many parameters, resulting in a necessity

of large amounts of data, and often long training times [91, 49]. Although simpler ar-

chitectures have been proposed [128], these are typically only demonstrated on small

datasets with relatively little variation (i.e., only faces or only facades of buildings).

Therefore, we aim to produce a light-weight inpainting model, which can be applied to

large and complex datasets. In this chapter, we demonstrate that using dilated convo-

lutions we can construct a simple model that is able to obtain state-of-the-art perfor-

mance on various inpainting tasks.

The remainder of this chapter is organised as follows. In Section 5.2 we discuss
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related work on inpainting and dilated convolutions. In 5.3 we describe in particu-

lar Pixel Context Encoders, the architecture of our model and how it is trained. Sec-

tion 5.4 describes the experiments and the results we obtain on a variety of inpainting

tasks. Lastly, in Section 5.5 we conclude that our model is much less complex than ex-

isting models, while outperforming them on benchmark datasets of natural images and

paintings.

5.2 Related work

In this section we will discuss work related to image inpainting, dilated convolutions

and their application to inpainting, and finally our contributions.

5.2.1 Image inpainting

When a single pixel is missing from an image we can look at the adjacent pixels and

average their colour values to produce a reasonable reconstruction of the missing pixel.

When a larger region formed by directly adjacent pixels is missing, it is necessary to

take into account a larger neighbourhood surrounding the missing region. Moreover, it

may become insufficient to only smooth out the colour, to reconstruct the region in a

plausible manner. Additionally, for smaller regions it can be sufficient to only incorpo-

rate textural or structural information [10], however inpainting larger regions requires

understanding of the entire scene [91]. For example, given a picture of a face, if part

of the nose is missing it can be reconstructed by looking at the local context and tex-

tures. But once the entire nose is missing it requires understanding of the entire face

to be able to reconstruct the nose, rather than smooth skin [128].

The challenge of inferring (large) missing parts of images is at the core of image in-

painting, the process of reconstructing missing or damaged parts of images [9].

Classical inpainting approaches typically focus on using the local context to recon-

struct smaller regions, in this chapter we will focus on recent work using Convolutional

Neural Networks (CNN) to encode the information in the entire and inpaint large re-

gions [91, 128, 127, 28, 49]. From these recent works we will focus on two works, first

100



the work by Pathak et al. [91] who designed the (until now) ‘canonical’ way of per-

forming inpainting with CNN. Second, we will focus on the work by Iizuka et al. [49],

who very recently proposed several extensions of the work by Pathak et al., including

incorporating dilated convolutions.

Pathak et al. [91] present Context Encoders (CEs), a CNN trained to inpaint while

conditioned on the context of the missing region. CE describe the context of the miss-

ing region by encoding the entire image into a bottleneck representation. Specifically,

the spatial resolution of the input image is reduced with a factor 128; from 128 × 128,

to the bottleneck representation - a single vector. To compensate for the loss of spatial

resolution they increase the width of the bottleneck to be 4000 dimensional. Notably,

this increases the total number of model parameters tremendously, as compared to a

narrower bottleneck.

CEs are trained by means of a reconstruction loss (L2), and an adversarial loss. The

adversarial loss is based on Generative Adversarial Networks (GAN) [38], which in-

volves training a discriminator D to distinguish between real and fake examples. The

real examples are samples from the data x, whereas the fake examples are produced by

the generator G. Formally the GAN loss is defined as:

min
G

max
D

Ex∼pdata(x)[log(D(x) + log(1−D(G(x))] (5.1)

by minimising this loss the generator can be optimised to produce examples which are

indistinguishable from real examples. In [91] the generator is defined as the CE, and

the discriminator is a CNN trained to distinguish original images from inpainted im-

ages.

In a more recent paper, Iizuka et al. [49] propose two extensions to the work by

Pathak et al. [91]: (1) They reduce the amount of downsampling by incorporating

dilated convolutions, and only downsample by a factor 4, in contrast to Pathak et al.

who downsample by a factor 128. (2) They argue that in order to obtain globally and

locally coherent inpainting results, it is necessary to extend the GAN framework used
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in [91] by using two discriminators. A ‘local’ discriminator which focuses on a small re-

gion centred around the inpainted region, and a ‘global’ discriminator which is trained

on the entire image. Although the qualitative results presented in [49] appear intuitive

and convincing, the introduction of a second discriminator results in a large increase

in the number of trainable parameters.

Ablation studies presented in a number of works on inpainting have shown that

the structural (e.g., L1 or L2) loss results in blurry images [91, 127, 49]. Nonetheless,

these blurry images do accurately capture the coarse structure, i.e., the low spatial fre-

quencies. This matches an observation by Isola et al. [51], who stated that if the struc-

tural loss captures the low spatial frequencies, the GAN loss can be tailored to focus

on the high spatial frequencies (the details). Specifically, Isola et al. introduced Patch-

GAN, a GAN which focuses on the structure in local patches, relying on the structural

loss to ensure correctness of the global structure. PatchGAN, produces a judgement

for N × N patches, where N can be much smaller than the whole image. When N is

smaller than the image, PatchGAN is applied convolutionally and the judgements are

averaged to produce a single outcome.

Because the PatchGAN operates on patches it has to downsample less, reducing the

number of parameters as compared to typical GAN architectures, this fits well with

our aim to produce a light-weight inpainting model. Therefore, in our work we choose

to use the PatchGAN for all experiments.

Before turning to explanation of the complete model in section 5.3, we first describe

dilated convolutions in more detail.

5.2.2 Dilated convolutions

The convolutional layers of most CNN architectures use discrete convolutions. In dis-

crete convolutions a pixel in the output is the sum of the elementwise multiplication

between the weights in the filter and a region of adjacent pixels in the input. Dilated

or l-dilated convolutions offer a generalisation of discrete convolutions [129] by intro-

ducing a dilation factor l which determines the ‘sampling’ distance between pixels in

102



(a) (b) (c)

Figure 5.3: Comparison of 1-dilated versus 2-dilated filter. (a) shows the receptive field of a 3× 3 1-dilated
filter directly on the input. (b) shows the 5 × 5 receptive field of a 1-dilated 3 × 3 filter applied to (a). (c)
shows the 7× 7 receptive field of a 2-dilated 3× 3 filter applied to (a). (c) has a larger receptive field than
(b), with the same number of parameters.

the input. For l = 1, dilated convolutions correspond to discrete convolutions. By

increasing the dilation factor, the distance between pixels sampled from the input be-

comes larger. This results in an increase in the size of the receptive field, without in-

creasing the number of weights in the filter. Figure 5.3 provides a visual illustration of

dilated convolution filters.

Recent work has demonstrated that architectures using dilated convolutions are es-

pecially promising for image analysis tasks requiring detailed understanding of the

scene [129, 130, 49]. For inpainting the aim is to fill the missing region in a manner

which is both globally and locally coherent, therefore it relies strongly on a detailed

scene understanding. In this work we incorporate lessons learnt from the work by Yu

et al. [129, 130] and Iizuka et al. [49] and present a lightweight and flexible inpainting

model with minimal downsampling.

5.2.3 Our contributions

In this work we make the following four contributions. (1) We present a light-weight

and flexible inpainting model, with an order of magnitude fewer parameters than used

in previous work. (2) We show state-of-the-art inpainting performance on datasets of

natural images and paintings. (3) While acknowledging that a number of works have
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explored inpainting of cracks in paintings [32, 107, 18], we pose that we are the first to

explore inpaintings of large regions of paintings. (4) We demonstrate that our model

is capable of extending images (i.e., image extrapolation), by generating novel content

which extends beyond the edges of the current image.

5.3 Pixel Context Encoders

In this section we will describe our inpainting model: Pixel Context Encoders (PCE).

Firstly, we will describe the PCE architecture, followed by details on the loss function

used for training.

5.3.1 Architecture

Typically, Convolutional Neural Networks which are used for image generation follow

an encoder-decoder type architecture [51]. The encoder compresses the input, and the

decoder uses the compressed representation (i.e., the bottleneck) to generate the out-

put. Our PCE does not have a bottleneck, nevertheless we do distinguish between a

block of layers which encodes the context (the encoder), and a block of layers which

take the encoding of the image and produces the output image, with the missing re-

gion filled in (the decoder).

Input

Encoder

Decoder

Output

PCE

Figure 5.4: Visualisation of the PCE architecture. Unlike traditional encoder-decoder architectures, the
PCE architecture does not have a bottleneck. The encoder describes the context (i.e., the input), and the
decoder generates the output image.
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Table 5.1: Growth of the PCE receptive field (RF) and dilation rate d as a function of the number of lay-
ers (depth), with a filter size of 3× 3. The first two layers are discrete convolutions with a stride of 2.

Depth d RF size
1 1 3× 3
2 1 7× 7
3 2 23× 23
4 4 55× 55
5 8 119× 119
6 16 247× 247

The encoder consists of two downsampling layers, followed by a block of n dilated

convolutional layers. The downsampling layers of the encoder are discrete convolutions

with a stride of 2. For the subsequent dilated convolution layers, the dilation rate d in-

creases exponentially. The depth of the encoder is chosen such that the receptive field

of the encoder is (at least) larger than the missing region, for all of our experiments

n = 4, resulting in a receptive field of 247 × 247. Table 5.1 shows how the size of the

receptive field grows as more layers are added to the encoder.

By incorporating strided convolutions in the first two layers we follow Iizuka et al.

[49] and downsample the images by a factor 4, our empirical results showed that this

improves inpainting performance and drastically reduces (5 to 6 times) memory re-

quirements as compared to no downsampling. We pose that the increased performance

stems from the larger receptive field, and the local redundancy of images, i.e., neigh-

bouring pixels tend to be very similar. Nonetheless, we expect that stronger downsam-

pling will results in too great of a loss of spatial resolution, lowering the inpainting

performance.

The decoder consists of a block of 3 discrete convolutional layers which take as in-

put the image encoding produced by the encoder. The last two layers of the decoder

are preceded by a nearest-neighbour interpolation layer, which upsamples by a fac-

tor 2, restoring the image to the original resolution. Additionally, the last layer maps

the image encoding back to RGB space (i.e., 3 colour channels), after which all pixels

which were not missing are restored to the ground-truth values.

All convolutional layers in the encoder and decoder, except for the last decoder
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layer, are followed by a Batch Normalisation layer [50]. The activation functions for all

convolutional layers in the encoder and decoder are Exponential Linear Units (ELU)

[17].

5.3.2 Loss

PCEs are trained through self-supervision; an image is artificially corrupted, and the

model is trained to regress back the uncorrupted ground-truth content. The PCE F

takes an image x and a binary mask M (the binary mask M is one for masked pixels,

and zero for the pixels which are provided) and aims to generate plausible content for

the masked content F (x,M). During training we rely on two loss functions to opti-

mise the network: a L1 loss and a GAN loss. For the GAN loss we specifically use the

PatchGAN discriminator introduced by Isola et al. [51].

The L1 loss is masked such that the loss is only non-zero inside the corrupted re-

gion:

LL1 = ∥M ⊙ (F (x,M)− x)∥1 (5.2)

where ⊙ is the element-wise multiplication operation.

Generally, the PatchGAN loss is defined as follows:

min
G

max
D

Ex∼pdata(x)[log(D(x) + log(1−D(G(x))] (5.3)

where the discriminator D aims to distinguish real from fake samples, and the genera-

tor G aims to fool the discriminator. For our task we adapt the loss to use our PCE as

the generator:

LGAN = min
F

max
D

Ex∼pdata(x)[log(D(x)+

log(1−D(F (x,M))],

(5.4)

our discriminator is similar to the global discriminator used in [49], except that we

restore the ground-truth pixels before processing the generated image with the discrim-
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inator. This allows the discriminator to focus on ensuring that the generated region is

consistent with the context.

The overal loss used for training thus becomes:

L = λLL1 + (1− λ)LGAN (5.5)

where λ is fixed at 0.999 for all experiments, following [91].

5.4 Experiments

To evaluate the performance of our PCE we test it on a number of datasets and vari-

ations of the inpainting task. In this section we will describe the datasets and the ex-

perimental setting used for training, the results of image inpainting on 128 × 128 and

256× 256 images, and lastly the image extrapolation results.

All results are reported using the Root Mean Square Error (RMSE) and Peak Sig-

nal Noise Ratio (PSNR) between the uncorrupted ground truth and the output pro-

duced by the models.

5.4.1 Datasets

ImageNet. As a set of natural images we use the subset of 100, 000 images that Pathak

et al. [91] selected from the ImageNet dataset [96]. The performance is reported on

the complete ImageNet validation set consisting of 50, 000 images.

PaintersN. The “Painters by Numbers” dataset (PaintersN) as published on Kag-

gle∗ consists of 103, 250 photographic reproductions of artworks by well over a thou-

sand different artists. The dataset is divided into a training set (93, 250 images), vali-

dation set (5000 images), and test set (5000 images) used for training the model, opti-

mising hyper-parameters, and reporting performances, respectively.

For both datasets all images were scaled such that the shortest side was 256 pixels,

and then a randomly located 256× 256 crop was extracted.
∗https://www.kaggle.com/c/painter-by-numbers
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5.4.2 Experimental settings

In this section the details on the settings of the hyperparameters and training proce-

dure are provided. The layers of the encoder and the decoder consist of 128 filters

with spatial dimensions of 3×3 for all experiments in this work. All dilated layers were

initialised using identity initialisation cf. [129], which sets the weights in the filter such

that initially each layer simply passes its input to the next. All discrete convolutional

layers were initialised using Xavier initialisation [34].

The PatchGAN discriminator we used consists of 5 layers of filters with spatial di-

mensions of 3 × 3, using LeakyReLU as the activation function (α = 0.2). For the first

4 layers the number of filters increases exponentially (i.e., 64, 128, 256, 512), the 5th

layer outputs a single channel, the real/fake judgement for each patch in the input.

The network was optimised using ADAM [70] until the L1 loss on the training set

stopped decreasing. We were able to consider the training loss as we found that there

was no real risk of overfitting. Probably, this is due to the low number of model pa-

rameters. The size of the minibatches varied depending on memory capabilities of the

graphics card.

All images were scaled to the target resolution using bilinear interpolation when

necessary. During training the data was augmented by randomly horizontally flipping

the images.

Using the hyperparameter settings specified above, our PCE model has significantly

fewer model parameters than previously presented inpainting models. Table 5.2 gives

an overview of the model parameters† for the most relevant models. Clearly, the num-

ber of parameters of the PCE model is much smaller than those of comparable meth-

ods.
†At the time of writing the exact implementation by Iizuka et al. was not available, therefore we

calculated the number of parameters based on the sizes of the weight matrices given in [49], thus not
counting any bias, normalisation, or additional parameters.
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Table 5.2: Number of parameters for the generators and discriminators of the inpainting models by Pathak
et al. [91], Iizuka et al. [49], and ours.

Model # Generator # Discriminator
CE [91] 71, 130, 531 2, 766, 529
Iizuka et al. [49] 6, 061, 600 29, 322, 624
PCE 1, 041, 152 1, 556, 416

5.4.3 Region inpainting

A commonly performed task to evaluate inpainting, is region inpainting [91, 128, 127].

Typically, in region inpainting a quarter of all the pixels are removed by masking the

centre of the image (i.e., centre region inpainting). This means that for a 256 × 256

image the central 128 × 128 region is removed. A variant of centre region inpainting

is random region inpainting where the missing region is not fixed to the centre of the

image, but is placed randomly. This requires the model to learn to inpaint the region

independently of where the region is, forcing it to be more flexible.

In this section we will first present results of centre region image inpainting on 128×

128 images, followed by the results of centre and random region inpainting on 256×256

images.

To evaluate the centre-region inpainting performance of our PCE model we compare

it against the performance of the CE model by Pathak et al. [91]. For this reason, we

initially adopt the maximum resolution of the model of Pathak et al., i.e., 128 × 128,

subsequent results will be presented on 256 × 256 images. For the 128 × 128 ImageNet

experiments we use the pretrained model release by Pathak et al. For the 128 × 128

results on the PaintersN dataset we have trained their model from scratch.

The model by Pathak et al. [91] uses an overlap (of 4 pixels) between the context

and the missing region. Their intention with this overlap is to improve consistency

with the context, but as a consequence it also makes the task slightly easier, given

that the masked region shrinks by 4 pixels on all sides. For all centre region inpainting

experiments we also‡ add a 4 pixel overlap between the context and the missing region,
‡PCE do not require this overlap to achieve a smooth transition between the context and the miss-

ing region. Nonetheless we incorporate to make it a fair comparison.
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Table 5.3: Centre region inpainting results on 128× 128 images with a 64× 64 masked region. RMSE and
PSNR for models trained on the ImageNet and PaintersN datasets (horizontally), and evaluated on both
datasets (vertically).

ImageNet PaintersN
Trained on Model RMSE PSNR RMSE PSNR

Imagenet CE [91] 43.12 15.44 40.69 15.94
PCE 22.88 20.94 22.53 21.08

PaintersN CE [91] 43.69 15.32 40.58 15.96
PCE 24.35 20.40 23.33 20.77

however unlike Pathak et al. we do not use a higher weight for the loss in the overlap-

ping region, as our model is able to achieve local consistency without this additional

encouragement.

In Table 5.3 the results on 128 × 128 images are shown, all models are trained and

evaluated on both the ImageNet and dataset the PaintersN dataset, to explore the

generalisability of the models. The performance of our PCE model exceeds that of the

model by Pathak for both datasets. Nonetheless, both models perform better on the

PaintersN dataset, implying that this might be an easier dataset to inpaint on. Over-

all, our PCE model trained on the 100, 000 image subset of ImageNet performs best,

achieving the lowest RMSE and highest PSNR on both datasets.

Additionally, in Figures 5.5 and 5.6 we show examples of centre region inpainting

on the ImageNet and PaintersN datasets, respectively. Qualitatively, our PCE model

appears to generate content which is less blurry and more consistent with the context.

Obviously, both models struggle to recover content which was not available in the in-

put, but when not considering the ground truth, and only the generated output, we

observe that our PCE model produces more plausible images.

As our PCE model is capable of inpainting images larger than 128 × 128, we show

results on 256 × 256 images, with a 128 × 128 missing region in Table 5.4. Addition-

ally, in this table we also show random region inpainting results. The random region

inpainting models were trained without overlap between the context and the missing

region.

The results in Table 5.4 not only show that our model is capable of inpainting im-

ages at a higher resolution, they also show that randomising the location of the miss-
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Ground Truth Input CE PCE

Figure 5.5: Comparison between CE [91] and our PCE model, on inpainting a 64 × 64 region in 128 × 128
images taken from the ImageNet validation set.

ing region only has a minimal effect on the performance of our model. Although all

results were obtained by training a model specifically for the task, we note that no

changes in model configuration were necessary to vary between tasks.

In Figure 5.7 we show several centre region inpainting examples generated by our

PCE model on 256× 256 images.
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Ground Truth Input CE PCE

Figure 5.6: Comparison between CE [91] and our PCE model, on inpainting a 64 × 64 region in 128 × 128
images taken from the PaintersN test set.

5.4.4 Image extrapolation

In this section, we explore image extrapolation; generating novel content beyond the

image boundaries. By training a PCE to reconstruct the content on the boundary

of an image (effectively inverting the centre region mask), we are able to teach the

model to extrapolate images. In Table 5.5 we show the results of image extrapolation
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Table 5.4: Centre and random region inpainting results for PCE on 256 × 256 images with a 128 × 128
masked region. RMSE and PSNR for models trained on the ImageNet and PaintersN datasets (horizon-
tally), and evaluated on both datasets (vertically). The first two rows are for centre region inpainting, the
last two for random region inpainting.

ImageNet PaintersN
Region Trained on RMSE PSNR RMSE PSNR

Centre Imagenet 24.36 20.40 23.87 20.57
PaintersN 24.99 20.17 23.41 20.74

Random Imagenet 24.62 20.30 24.20 20.45
PaintersN 25.13 20.13 24.06 20.51

Table 5.5: Image extrapolation results for PCE on 256× 256 images based on a provided 192× 192 centre
region. RMSE and PSNR for models trained on the ImageNet and PaintersN datasets (horizontally), and
evaluated on both datasets (vertically).

ImageNet PaintersN
Trained on RMSE PSNR RMSE PSNR
Imagenet 31.81 18.08 32.82 17.81
PaintersN 32.67 17.85 32.39 17.92

obtained by only providing the centre 192 × 192 region of 256 × 256 images, aiming

to restore the 64 pixel band surrounding it. For our region inpainting experiments we

corrupted 1
4th of the pixels, whereas for this task 9

16th of the pixels are corrupted. De-

spite the increase in size of the reconstructed region, the difference in performance is

not very large, highlighting the viability of image extrapolation with this approach.

In Figure 5.8 we show four examples obtained through image extrapolation. Based

on only the provided input our PCE is able to generate novel content for the 64 pixel

band surrounding the input. Although the output does not exactly match the input,

the generated output does appear plausible.

Additionally, in Figure 5.9 we show images obtained by applying the PCE trained

for image extrapolation to uncorrupted images, resized to 192 × 192 pixels. By resiz-

ing the images to the resolution of the region the model was train on, the model will

generate a band of 64 pixels of novel content, for which there is no ground truth.

5.5 Conclusion

In this chapter we presented a novel inpainting model: Pixel Content Encoders (PCE),

by incorporating dilated convolutions and PatchGAN we were able to reduce the com-
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Ground Truth Input PCE

Figure 5.7: Examples produced by our PCE model, on inpainting a 128 × 128 region in 256 × 256 images
taken from the ImageNet validation set in the first two rows, and PaintersN test set in the last two rows.
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Ground Truth Input PCE

Figure 5.8: Examples produced by our PCE model, on extrapolating 192×192 regions taken from 256×256
images from the ImageNet validation set in the first two rows, and PaintersN test set in the last two rows.
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Original PCE Original PCE

Figure 5.9: Examples produced by our PCE model, on extrapolating 192×192 images beyond their current
boundaries. The images in the first two rows are from the ImageNet validation, and in the last two rows
from the PaintersN test set.

plexity of the model as compared to previous work. Moreover, by incorporating di-

lated convolutions PCE are able to preserve the spatial resolution of images, as com-

pared to encoder-decoder style architectures which lose spatial information by com-

pressing the input into ‘bottleneck’ representations.

We trained and evaluated the inpainting performance of PCE on two datasets of
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natural images and paintings, respectively. The results show that regardless of the

dataset PCE were trained on they outperform previous work on either dataset, even

when considering cross-dataset performance (i.e., training on natural images and eval-

uating on paintings, and vice versa). Based on the cross-dataset performance we pose

that PCE solve the inpainting problem in a largely data-agnostic manner. By encod-

ing the context surrounding the missing region PCE are able to generate plausible con-

tent for the missing region in a manner that is coherent with the context.

The approach presented in this chapter does not explicitly take into account the

artist’s style. However, we would argue that the context reflects the artist’s style, and

that generated content coherent with the context is therefore also reflects the artist’s

style. Future research on explicitly incorporating the artist’s style is necessary to de-

termine whether it is beneficial for inpainting on artworks to encode the artist’s style

in addition to the context.

We conclude that PCE offer a promising avenue for image inpainting and image

extrapolation. With an order of magnitude fewer model parameters than previous in-

painting models, PCE obtain state-of-the-art performance on benchmark datasets of

natural images and paintings. Moreover, due to the flexibility of the PCE architec-

ture it can be used for other image generation tasks, such as image extrapolation. We

demonstrate the image extrapolation capabilities of our model by restoring boundary

content of images, and by generating novel content beyond the existing boundaries.
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6
Conclusion



In this chapter we bring together the answers to the two research questions investi-

gated in Chapters 2-3, and 4-5. Second, we address the problem statement, which was

the foundation for the research conducted in this thesis. Lastly, we present - what we

consider to be - promising directions for future work.

6.1 Answers to the research questions

In the research presented in this thesis, we addressed two research questions. In this

section we will answer each of the research questions by referring to the results and

conclusions from the associated chapters.

Research question 1 (RQ1): Is it possible to learn a representation of the artist’s

style, which can be used to recognise the style of the artist across multiple artworks?

To answer RQ1, in Chapter 2 we performed an initial exploration of the feasibil-

ity of representation learning for recognising the artist’s style across artworks. Subse-

quently, in Chapter 3 we addressed a limitation of the work presented in Chapter 2,

resulting in the definitive answer to RQ1.

In Chapter 3 we presented the first study on representation learning for artist at-

tribution. While previous work aimed to use existing feature extractors to attribute

artists to artworks [63, 47, 112], we showed that it is possible to learn representations

- directly from artwork data - which can be used to attribute artist, to a high degree

of accuracy, to the correct artwork. Specifically, we presented a Convolutional Neu-

ral Network (PigeoNET), which is trained in a supervised manner to attribute artist

to the correct artwork. We explore the effectiveness of PigeoNET in two different

datasets configurations, which differ with respect to the variety of types of artworks

(e.g., pocelain, paintings, drawings): a homogeneous dataset and heterogeneous dataset.

Our results show that PigeoNET performs best on a homogeneous dataset, with only a

single type of artwork.

Additionally, we explored the influence of the size of the data on the performance
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of PigeoNET. Unsurprisingly, our results showed that more data is beneficial to the

performance, nonetheless, even in very data-poor settings PigeoNET performs well

above chance level. To summarise, in Chapter 2 we demonstrated that it is possible to

learn representations of the artist’s style, and to recognise it across artworks up to a

high degree of accuracy.

Although promising, the performance obtained in Chapter 2 disregarded an impor-

tant source of information, namely: scale. Artworks have highly varying physical di-

mensions, but not all visual characteristics present in an artwork scale proportionally

to these physical dimensions. For instance, by using a larger piece of canvas we do not

enlarge the weave patterns we might observe when viewing the artwork from up close.

Yet, by resizing images of artworks to a uniform size we lose such scale-specific infor-

mation [35]. In Chapter 3 we thus expanded on the work presented in Chapter 2 by

addressing multi-scale artwork analysis.

The importance of scale is well-known in computer vision [80], yet previous work

on deep learning has only aimed to take advantage of it by means of simple data aug-

mentation, to learn features which are (slightly) more robust to scale variations [111,

105, 33, 124]. In doing so, this work does not make use of scale-specific information.

In Chapter 3 we presented an approach for learning scale-specific representations, and

combining these to obtain a single multi-scale representation. Our results showed that

combining multiple scales-specific representations results in a greater artist attribution

ability, as compared to single-scale approaches. The model presented in Chapter 3 ad-

vanced the state-of-the-art for automatic artist attribution, outperforming both previ-

ous work using learnt representations, and work using engineered features.

Based on the studies presented in Chapters 2 and 3 we may conclude that in prin-

ciple it is possible to learn representations which can be used to recognise the style of

the artist across multiple artworks. Learnt representations do not (yet) enable perfect

recognition, nonetheless we demonstrated that representation learning is a fruitful ap-

proach to recognising the artist’s style.

121



Research question 2 (RQ2): Can we generate novel image content in the style of

the artist?

To answer RQ2, we performed two studies which aim to generate novel image con-

tent. First, in Chapter 4 we investigated generating novel image colour in the style

of the artist. Followed by Chapter 5, where we investigate restoring missing parts of

images of artworks through inpainting. Before answering RQ2 we will first briefly sum-

marise the findings of Chapters 4 and 5.

The palette of an artist is an important part of their style. How an artist decides

to colour a certain image region or object is a stylistic choice. Being able to replicate

these choices, by colouring an image in a manner which matches how the artist would

have coloured it, demonstrates understanding of the artist’s style. In Chapter 4 we

investigated learning representations for artist-specific colourisation.

Previous work on image colourisation has shown that CNNs are capable of automat-

ically colouring images [72, 133, 23, 48, 51]. Specifically, through self-supervision by

removing the colours from an image a CNN can be trained to restore the ground-truth

colours. By training through self-supervision, the CNN learns to associate the seman-

tics of image regions with the ground truth colours, allowing it to produce plausible

colours for unseen images.

Yet, for artworks the colours of an image are also determined by the artist’s style,

and not just the image semantics. Therefore, in Chapter 4 we presented an approach

for learning representations of artist-specific colourisation. Our results showed that we

are able to create plausible colourisations of artworks, and that performing the colouri-

sation in an artist-specific manner appears beneficial. Moreover, we showed that our

model can also use its understanding of the style from one artist, and use it to colour

artworks by other artists, demonstrating the diversity in colourisation our model can

produce.

In Chapter 5 we investigated restoring large missing parts of artworks and natu-

ral images through inpainting. Retouching, or inpainting, is common practice in the
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cultural heritage domain. Typically, the aim is only to inpaint small regions, for in-

stance to hide small defects [9]. Yet, for paintings through accidental or natural causes

it might be necessary to inpaint larger regions. Moreover, inpainting larger regions

requires a greater understanding of the image and the area surrounding the missing

region (i.e., the context) [91].

Previous work on inpainting using CNNs trained with self-supervision has shown

that it is possible to inpaint large missing regions in natural images [91, 128, 127, 49].

Yet, this has not been explored for artworks, whereas for demonstrating the poten-

tial of generating image content in the style of the artist it is a highly suited task.

Therefore, in Chapter 5 we not only explored inpainting on natural images, but also

on paintings. Additionally, we presented a novel inpainting model, which has an or-

der of magnitude fewer trainable parameters than previous work. Our results showed

that our inpainting model advances the state-of-the-art for image inpainting, and can

plausibly inpaint missing image regions.

Based on the studies presented in Chapters 4 and 5 we may conclude that in prin-

ciple we can generate image content in the style of the artist. Although we have not

exhaustively explored all aspects of image content generation, we show that based on

a reference image (i.e., a colourless image, or the context surrounding missing area) we

are able to add novel content to the reference image. Moreover, recent work on image

translation has shown that images in the style of the artist can be produced when us-

ing a photograph as a reference image [30, 135]. Therefore, based on our work and re-

cent developments we may conclude that it is possible to generate novel image content

based on references images.

6.2 Answer to the problem statement

Based on the answers to our research questions we can now formulate an answer to

the problem statement.

PS: To what extent can the artist’s style be represented in a digital manner?
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From our results we may conclude that the artist’s style can be represented in a dig-

ital manner, to an extent that enables: (1) the recognition of the artist’s style across

multiple artworks to a higher degree of accuracy than previously possible, and (2) the

generation of novel image content in the style of the artist.

Based on the answer to the problem statement we can now reflect on how our re-

search contributed to the main goal mentioned in Chapter 1, namely the goal of realis-

ing the ability for connoisseurship in a computer, and giving the computer the ability

to produce artworks in the style of the artist. With respect to the former part of the

goal: our results in Chapters 2 and 3 show that a computer can attribute an artwork

to the correct artist in up to 80% of the cases. Nevertheless, we do not argue that this

qualifies as connoisseurship, as our system only uses visual information, and has very

limited exposure to potential distractors, such as students in the artist’ workshop or

forgers. Yet, the work we presented is a step in the direction of connoisseurship, and

may eventually contribute to a computational system that truly qualifies as an art

connoisseur.

With respect to the latter part of the goal, in Chapters 4 and 5 we demonstrated

that given reference material our models can add colour to colourless artworks, and in-

paint missing regions of artworks. But, this does not fully cover what we mean by pro-

ducing an artwork, as this implies creating truly novel artworks from scratch. Nonethe-

less, the contributions we make might someday become components in a system that

can produce a new Van Gogh.

6.3 Future work

We identify three main directions for future work on art analysis: (1) multi-task learn-

ing, (2) stylistic changes, and (3) alternative types of imaging data. In what follows we

will discuss each of these directions.

First, while learning a representation specifically for a certain task can be - as we

have shown - very fruitful, there is not sufficient data available to learn a representa-

tion for every task. Specifically, for classification tasks it is necessary to have labelled
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data, which might only be available in small amounts. However, if we are able to learn

more general representations on tasks for which there is sufficient data, we might be

able to re-use these representations for other data-poor tasks. Therefore, future work

should address multi-task learning. By learning representations on multiple tasks at

the same time, we might learn more general representations. In [109] this is explored

for four recognition tasks, but ideally multi-task settings for learning representations

of the artist’s style would include both recognition and generation tasks.

Second, artists might go through a number of stylistic changes throughout their oeu-

vre. For example, Vincent van Gogh changed his style repeatedly (e.g., his earlier work

made in Nuenen differs strongly from his later work in Paris). These changes are an

important component of the artist’s style which should be addressed by future work.

Specifically, future work might focus on incorporating these stylistic changes into a

single representation, or by learning a representation that captures the temporally un-

folding stylistic development. Alternatively, future work could focus on disentangling

artist characteristics which do not change over time from characteristics that are defin-

ing for a certain time-period, enabling more fine-grained attribution.

Third, in this work the original format of the data were always RGB images ob-

tained by photographing artworks. However, there are many more imaging methods

beyond just photography. Such methods include X-ray [22], multispectral [134] and

hyperspectral [77] imaging, and tomography. While many of these methods are being

used for art investigation, there are no public, large-scale datasets available yet. Fu-

ture work should focus on collecting, sharing, and analysing alternative types of imag-

ing data, such that we might learn representations which enable applications such as

pigment identification, digital artificial aging, and more accurate artist attribution.

This thesis has provided foundational aspects of such future work by demonstrating

the feasibility of representation learning for art analysis.
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Summary

An artist’s style is reflected in their artworks. This style is independent from the

content of the artwork, two artworks depicting two vastly different scenes (e.g., a beach

scene and a forest scene) both reflect the artist’s style. By recognising the style of the

artist, experts, and sometimes even laymen, can tell the same artist created both art-

works. Replicating this ability for connoisseurship in a computer, and potentially even

giving a computer the ability to produce artworks in the style of the artist, is the main

goal of this thesis.

To analyse artworks with a computer we can use techniques from the field of com-

puter vision. Traditionally, these techniques rely on handcrafted features to describe

the characteristics of an image. However, in recent years the field of computer vision

has been revolutionalised by the emergence of deep learning models. These are models

which learn from the data a feature representation optimised for a task.

Deep learning models have been shown to be enormously successful on a wide range

of computer vision tasks. Therefore, in this work we explore the applications of deep

learning models for learning representations of the artist’s style. By learning the rep-

resentation we might discover new visual characteristics of artists, enriching our un-

derstanding of the artist’s style. Moreover, such a representation might enable new

and novel applications. To guide the research in this thesis we formulate the following

problem statement:

To what extent can the artist’s style be represented in a digital manner?

To address the problem statement we identify two requirements for a useful repre-

sentation of style: (1) the artist’s style can be recognised across multiple artworks, and

139



(2) the representation can be used to generate novel content that has the stylistic char-

acteristics of the artist. To guide our attempts at answering the problem statement we

rephrase these requirements as the following two research questions.

• Research question 1: Is it possible to learn a representation of the artist’s
style, which can be used to recognise the style of the artist across multiple art-
works?

• Research question 2: Can we generate novel image content in the style of the
artist?

The first part of the thesis, Chapters 2 and 3 present two studies which aim to an-

swer the first research question, whereas Chapters 4 and 5 are aimed at the second

research question.

Specifically, in Chapter 2 we present a study on artist attribution, and the dataset

properties which influence the quality of the learnt representation. For example, the

number of artists and the number of artworks per artist might influence how well a

model could learn to discriminate between artists. Our findings show that our model

is able to learn to recognise artists up to a high degree of accuracy (irrespective of the

dataset configuration), and that the discriminating characteristics can be related back

to the visual content of the artwork.

In Chapter 3 we expand on the initial work on artist attribution done in Chapter 2

by investigating scale variation and scale-specific information. The distance at which

we view an object determines what details are visible. For instance, when viewing a

painting from too far away we cannot see the texture of the canvas, however if we are

too close we might not see what type of scene is depicted on the painting. Similar lim-

itations apply to a computer, in this chapter we aim to overcome these and present a

multi-scale method which is able to integrate information from multiple scales, outper-

forming single-scale approaches.

Chapter 4 presents a study on image colourisation. Colouring a greyscale image in

a plausible manner requires understanding of the contents of the image. For example,

if we recognise the sky as being the sky we can colour it blue, and the clouds white.
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Similarly, if we recognise the artist we might adapt our palette to match the artist’s,

which might lead us to colour the sky purple. In this chapter we show that by focusing

on the palette of a specific artist we are able to learn a representation of the artist’s

colour choice, producing artist-specific colourisations of paintings.

In Chapter 5 we investigate inpainting, the task of restoring (large) missing regions

in images. For instance, given an image of a damaged painting we might provide a

reconstruction of the damaged area. In this chapter we present a model which is ca-

pable of restoring missing regions in images of both natural scenes and paintings. By

analysing the context surrounding the missing region, the model is capable of gener-

ating novel image content, coherent with the context. Our experimental results show

that, while simpler, our model outperforms previous inpainting models.

Finally, in Chapter 6 we answer the two research questions and the problem state-

ment. We conclude that the artist’s style can be represented by training deep learning

models, the artist’s style can be represented in a digital manner, empowering applica-

tions such as artist attribution, image colourisation, and image inpainting. Following

the conclusion, we present three directions of future work.
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