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Abstract

The colours used in a painting are determined by artists
and the pigments at their disposal. Therefore, knowing who
made the painting should help in determining which colours
to hallucinate when given a colourless version of the paint-
ing. The main aim of this paper is to determine if we can
create a colourisation model for paintings which generates
artist-specific colourisations. Building on earlier work on
natural-image colourisation, we propose a model capable
of producing colourisations of paintings by incorporating a
conditional normalisation scheme, i.e., conditional instance
normalisation. The results indicate that a conditional nor-
malisation scheme is beneficial to the performance. In ad-
dition, we compare the colourisations of our model that is
trained on a large dataset of paintings, with those of com-
petitive models trained on natural images and find that the
painting-specific training is beneficial to the colourisation
performance. Finally, we demonstrate the results of stylistic
colour transfer experiments in which artist-specific colouri-
sations are applied to the artworks of other artists. We
conclude that painting colourisation is feasible and bene-
fits from being trained on a dataset of paintings and from
applying a conditional normalisation scheme.

1. Introduction
Image colourisation is the task of hallucinating a colour

image given a greyscale image. This task is clearly under-
constrained in that a pixel with a given greyscale value can
be assigned a number of different colours. Nonetheless, for
most natural images there are colours which are much more
likely than others, e.g., given a tropical beach scene we can
all imagine that the sky and water are blue, the sand a light
tan, and the palm leaves green. In other words, the seman-
tics of the image region impose constraints on what would
be plausible colours. If we are able to recognise what is
depicted, we may be able to suggest a plausible colouri-
sation. Recent work has shown that Convolutional Neural
Networks (CNN) can obtain sufficient visual understanding

(a) “View in the Woods” (b) “Evening; Red Tree”
Figure 1. Examples of two paintings depicting a similar scene,
but with very different colour usage. Left is “View in the Woods”
(“Bosgezicht”) by Jan van Kessel (courtesty of the Rijksmuseum)
and right “Evening; Red Tree” (“Rode boom”) by Piet Mondrian
(courtesy of the Gemeentemuseum Den Haag).

to perform automatic image colourisation [15, 28, 3, 8, 10].
Depending on the type of image other factors than the

image semantics might play a role in determining the like-
lihood of colours. For paintings the idiosyncratic use of
colours by the artist greatly influences the likelihood of
colours. While (realistic) paintings are often intended as
realistic representations of natural scenes, the geographical,
historical, and economical availability of colourants might
have restricted the artist’s use of colour. Additionally, and
maybe more important to painters; their choice of colours
is often guided by aesthetic considerations [16]. As such
we pose that due to the inherent complexity of colouring
paintings it is necessary to take into account both the image
semantics, and the artist’s palette. An example of the influ-
ence the artist’s palette has on the used colours can be seen
in Figure 1, showing two similar scenes, one with realistic
colours and the other with seemingly unrealistic colours.

An image colourisation model might learn to take the
artist’s palette into account in the following two ways. The
first way of taking the artist’s palette into account is by
acquiring a model of the artist’s style. Previous work has
shown that CNNs are capable of acquiring a model of the
artist’s style [26]. Therefore, the model could learn to
recognise which visual content is artist-specific, and use this
to facilitate artist-specific colourisation. The second way of
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taking the artist’s palette into account, is to condition (part
of) the CNN on the artist, and explicitly enforce that it ac-
quires an artist-specific mapping.

In this paper, we compare these two approaches for pro-
ducing artist-specific colourisations of paintings. Our re-
sults indicate that explicitly conditioning the network makes
it possible to influence the colourisation, but that surpris-
ingly even without this explicit signal the network is able to
hallucinate plausible colours.

The remainder of this paper is organised as follows. Sec-
tion 2 reviews previous work on image colourisation, nor-
malisation, and computational art analysis. In Section 3
we describe the details of our approach. Followed by Sec-
tion 4 in which the results are presented, as well as a number
of qualitative comparisons of the colourisation results for
various models. In Section 5 we discuss several questions
which arose during this work. Finally in Section 6 we con-
clude by stating that the approach presented is capable of
producing highly diverse visually appealing colourisations
of paintings.

2. Previous work
This section reviews earlier work pertaining to our

colourisation approach: image colourisation, normalisation,
and computational art analysis.

2.1. Image Colourisation

Work on image colourisation can be divided into user-
based approaches and fully automatic approaches. User-
based approaches rely on interaction (e.g., provide scribbles
or reference images) with the user, whereas fully automatic
approaches aim to provide a colourised image without user
interaction, see [1] for a comprehensive overview.

Recent work on fully automatic image colourisation has
shown that Convolutional Neural Networks (CNN) are ca-
pable of producing visually appealing colourisation results
[15, 28, 3, 8, 10]. CNN-based fully automatic approaches
can be categorised into two groups: (1) per-pixel descriptor
approaches [2, 15] and (2) encoder-decoder type architec-
tures [8, 28, 3, 10]. The per-pixel descriptor approach con-
sists of passing the input image through a (pretrained) CNN
and extracting a hypercolumn descriptor [7] for each pixel.
The per-pixel descriptors are subsequently fed to a classi-
fier that predicts the colour based on the descriptor. Hy-
percolumns describe the region around the pixel at differ-
ent scales, incorporating a large amount of context, which
results in accurate predictions. However, densely extract-
ing hypercolumns from an image is very memory intensive,
making it expensive to train an end-to-end system. Larsson
et al. [15] propose to extract the hypercolumns from a sub-
set of randomly chosen locations, but only show that this
works for fine-tuning a network, not for training a network
from scratch.

In contrast, so called encoder-decoder architectures have
shown very promising results when trained from scratch
[10]. Typically, this type of architecture consists of an en-
coder which follows a traditional CNN layout, i.e., sev-
eral layers which have an increasing number of filters and
a decreasing spatial resolution. Followed by a decoder
which either upsamples using interpolation (e.g., nearest-
neighbour, bilinear, or bicubic), or deconvolution (i.e., frac-
tional strided convolution) [27]. Encoder-decoder architec-
tures are trained in either a Generative Adversial setting
[10], or with a pixel-wise loss [8, 28, 3].

2.2. Normalisation

Most modern CNN make use of Batch Normalisation
(BN) for each nonlinear unit in the network. BN reduces
internal covariate shift (changes in the distribution of the
inputs for a layer, due to weight updates in preceding lay-
ers) and accelerates training [9]. Given a batch of size T ,
BN normalises each channel c of its input x ∈RT×C×W×H

such that it has zero-mean and unit-variance. Formally, BN
is defined as:

ytijk = γi

(
xtijk − µi

σi

)
+ βi. (1)

where µi and σi describe the mean and standard devia-
tion for channel Ci across the spatial axes W and H , and
the batch of size T Additionally, for each channel there is a
pair of learned parameters γ and β, that scale and shift the
normalised value such that they may potentially recover the
original activations if needed [9]. BN is applied in a dif-
ferent way training and testing. Ideally we would calculate
µi and σi on the whole dataset prior to training, but as they
depend on the incrementally learned weight values of pre-
ceding layers this is not possible. Instead, during training
µi and σi are calculated on the actual batch and added to
moving averages. The resulting averages are used during
testing.

In recent work on style transfer, it was shown that ac-
counting for instance-specific contrast improves generation
results [25]. The approach, called Instance Normalisation
(IN), modifies BN in the following two ways: (1) IN cal-
culates µi and σi for each specific instance rather than for
the entire batch as in BN. (2) IN does not maintain moving
averages, and is applied identically during training and test-
ing. We expect that IN might also be beneficial for painting
colourisation, or even image colourisation in general, be-
cause uniform contrast changes should not alter the colouri-
sation substantially. Moreover, a dataset of paintings con-
sists of samples generated from different distributions (i.e.,
painters), as such we expect it is very unlikely that a single
mean and variance are sufficient to adequately normalise the
activations without introducing artifacts.



More recently, there has been work on extending feed-
forward style transfer [12] to deal with multiple styles by
conditioning the shifting and scaling parameters on the style
[4]. Conditional Instance Normalisation (CIN) modify IN
such that the γ and β parameters are N ×C matrices rather
than length C vectors, where N is equal to the number of
styles being modelled. In this work we will use CIN to mod-
ify the colour use of different artists, by conditioning the
shifting and scaling parameters on the artist.

2.3. Computational art analysis

There is large body of work on the computational anal-
ysis of artworks, while a large portion of this work is con-
cerned with learning characteristics of artists for classifica-
tion [11, 13, 26], an increasing body of work is emerging
which tries to capture artist-specific characteristics for gen-
erative purposes [5, 25, 4]. This latter type of work, is gen-
erally concerned with style transfer (i.e., given a style im-
age S and a content image C produce a single image with
style Sstyle and content Ccontent). In this work we are only
concerned with the colour aspects of the style.

2.4. Our Contributions

In this work we make the following three contributions:
(1) We present an image colourisation model1 building on
components from previous works, which we apply and eval-
uate on a dataset of paintings. (2) We compare various
normalisation schemes, investigating the influence of batch
versus instance normalisation, and conditional versus un-
conditional normalisation. (3) We show that the models
using conditional and ‘unconditional’ instance normalisa-
tion utilise their visual understanding of image regions in
an artist-specific way, resulting in visually appealing and
diverse colourisations of paintings.

3. Method
In this work we use a ‘encoder-decoder’-style convo-

lutional neural network to perform end-to-end colourisa-
tion of paintings, with the additional goal of learning the
artist’s unique palette. To explicitly learn the artist’s palette,
or colour use, we add Conditional Instance Normalisation
(CIN) to the network, where the γ and β parameters are
conditioned on the artist.

3.1. Loss

For image colourisation the goal is to learn a mapping
Ŷ = F (X) from a greyscale image X ∈ RH×W to a colour
image Y , where the pixel lightness values are taken to rep-
resent the greyscale image, and H,W are the image width
and height respectively. Typically colour images are rep-
resented in RGB colour space that combines colour infor-

1https://github.com/Nanne/conditional-colour

mation with luminance (intensity) information, luminance
is encoded in the mean of the R, G, and B channels.

For image colourisation the CIE Lab colour space is
more appropriate, because it represents luminance (L) as
a channel separate from the two colour channels a and b.
Colourisation in Lab colour space means mapping the L
channel of an image to the Lab channels. In CIE Lab, a
represents colours along the red-green axis and b along the
blue-yellow axis. Both CIE Lab colour values are contin-
uous valued. Hence, colourisation could be formulated as
a regression task. However, previous work has shown that
formulating colourisation as a regression task tends to result
in desaturated colours [15, 28]. This is most likely due to
the tendency of regression to favour the mean when deal-
ing with a multimodal distribution across colours, i.e. if a
colour regression model is trained on a database of t-shirts,
where half of the t-shirts are completely white, and the other
half are completely black it will probably favour grey at test
time.

A common solution to deal with this limitation of regres-
sion is to reformulate the task as a classification task, by dis-
cretising the target, and effectively predicting a histogram
across colour bins for each pixel. We discretise the a and b
channels separately by binning the axes with Q equal-width
bins, where we set Q = 32 following [15]. Therefore, Y
becomes a four dimensional matrix Y ∈ [0, 1]H×W×Q×2,
and the loss effectively becomes the sum of the cross en-
tropy loss for both the a and the b channel.

3.2. Class rebalancing

Zhang et al. [28] show that during training it is pos-
sible to re-weight the loss at each pixel, following an ap-
proach akin to sample weighting. The loss at each pixel is
re-weighted based on a weighting factor determined by the
rarity of the target colour. This approach prevents the loss
function from being dominated by highly common colours
and is similar to the approach described in [3].

Following the procedure describe in [28] we estimate the
empirical probability distribution of colours in the discre-
tised space p ∈ ∆Q on the training set, which is smoothed
with a Gaussian kernel Gσ . Subsequently, the contribution
of the probability-weighted distribution is parameterised by
λ ∈ [0, 1]. More formally, Zhang et al. [28] define the
weighting factor w ∈ RQ as:

w ∝
(
(1− λ)(Gσ ◦ p) + λ)−1 (2)

Unlike [28] we have discretised the a and b channels sep-
arately, therefore we also have separate losses for the a and
b channels. Subsequently, we weight the channels indepen-
dently using weighting factors wA and wB respectively. We
used the values of λ = 1

2 and σ = 5 following [28].

https://github.com/Nanne/conditional-colour
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Figure 2. Visualisation of the network architecture. Conv refers to
a convolution layer, and Up to an upsampling layer. The network
input is 224× 224 and the output is 224× 224× 2Q. The bottom
arrows between matching layers in the encoder and decoder indi-
cate skip connections. Skip connections differ from regular con-
nections in that they are concatenated to the output of the matching
layer, integrating lower-level features at a higher spatial resolution
to upsampled higher-level features.

3.3. Network architecture

The network architecture used for our colourisation
model is based on the “U-Net” architecture[19] used in
[10], and is shown in Figure 2. The U-Net architecture is
an encoder-decoder architecture with skip connections be-
tween matching layers in the encoder and the decoder. The
skip connections enable a direct mapping between layers
at the same spatial scale. This allows the encoder-decoder
path of the network to model the mapping from the grey val-
ues to colours, without being responsible for a reconstruc-
tion of all image details. We modified U-Net by replac-
ing the upsampling (de)convolution layers with upsampling
by means of nearest-neighbour interpolation, followed by a
convolutional layer, as described in [4]. This upsampling
method helps to avoid high spatial frequency noise [4] and
‘Checkerboard’ artifacts [17]. The kernel size for all convo-
lutional layers was set to 4× 4, and all convolutional layers
in the encoder use a stride of 2. All layers use a ReLU
nonlinearity, except the last layer which is followed by a
softmax activation function.

The network outputs a colour histogram for each pixel,
to convert this to an actual colour we take the ‘expectation’
over the histogram i.e., the weighted sum of the colour bins
[15]. This results in smooth colour transitions and avoids
the discontinuities obtained when taking the colour of the
highest bin.

3.4. Training details

For training we use ADAM [14] (α = 0.001, β1 =
0.9, β2 = 0.999), and all the weights are initialised using
Xavier weight initialisation [6]. In terms of data augmenta-
tion we perform random horizontal flips, take 224 × 224
pixel crops, and introduce a random uniform brightness
shift on the L channel in the interval [−d, d). The value
of d was chosen to be smaller than noticeable to human ob-
servers i.e., the colour difference (∆E) was smaller than 1
[23].

4. Experiment
To evaluate our colourisation model we compare the per-

formances of the following seven approaches on a painting
dataset:

1. Greyscale - Baseline using greyscale versions of im-
ages (i.e., original L channel and ab channels set to 0).

2. Larsson et al. [15] - A CNN based approach using
sparse hypercolumns trained on natural images.

3. Zhang et al. [28] - An encoder-decoder style network
trained on natural images and paintings.

4. Ours BN - Our model using Batch Normalisation
trained on paintings.

5. Ours IN - Our model using Instance Normalisation
trained on paintings.

6. Ours CIN - Our model using Conditional Instance
Normalisation trained on paintings, conditioned on
1.678 artists.

7. Ours randomised-CIN - Our model with Conditional
Instance Normalisation, using a random artist rather
than the actual. If conditioning on the artist works then
we would expect this to perform worse than our CIN
model.

For each of the seven approaches, we compute the micro-
averaged root mean square error (RMSE) across all pixels in
ab space, and macro-averaged the peak signal to noise ratio
(PSNR) in RGB space per image. The greyscale approach
functions as a baseline by providing no colourisation, i.e.
all zero ab values.

The second and third approach (by Larsson et al. and
Zhang et al.), are originally trained on a dataset of natural
image (the ImageNet dataset) [20], and not on paintings.
Both approaches incorporate copies of the first layers from
a trained VGG-16 model [24], and are state-of-the-art (nat-
ural) image colourisation models. To compare the influence
of the training data we fine-tune model2 by Zhang et al. [28]
on our painting dataset. There are two motivations for fine-
tuning, (1) the performance of the models trained on natural
images show how well such models generalise to paintings.
(2) Fine-tuning the model allows us to compare the bene-
fits of training on paintings, and how our model compares
to this model in a comparable setting. For the four vari-
ations of our model the scores reveal the effectiveness of
the different normalisation schemes, where the randomised-
CIN is used as an extra validation of the CIN model. If the
randomised-CIN model performs worse than the CIN model

2We were unable to perform any type of training with the model by
Larsson et al.



we can infer that the conditioning is effective. In addition,
we perform qualitative evaluations of the best performing
colourisation approach and demonstrate the transfer of the
colour style of one artist onto an artwork of another artist.

In the remainder of this section we will introduce the
dataset used for the experiment, and present the results the
different approaches obtain.

4.1. Painting colourisation dataset

The painting colourisation performances is evaluated on
the “Painters by Numbers” dataset as published on Kag-
gle3. This dataset is a collection of images collected from
different sources, though the majority was retrieved from
“Wikiart” a repository which was used in a number of previ-
ous publications involving computational artwork analysis
[21, 22].

A portion of the images included in this dataset are
colourless or contain very little colour. For most of these
images this is because they are drawings on paper, and while
the paper might not be purely white, a greyscale prediction
would often be very close to the ground truth. Nevertheless,
we chose to keep these images in the dataset as we feel they
are inherent to the task, and fine-tuning the cut-off point for
how much colour is desirable might arbitrarily influence the
task.

From the “Painters by Numbers” dataset we select the
subset of artists who have at least 5 artworks in the dataset,
which results in a dataset consisting of 101.580 photo-
graphic reproductions of artworks produced by a total of
1.678 artists. Subsequently we divide the dataset into a
training, validation, and test set used for training the model,
evaluating stopping criteria, and reporting evaluation per-
formances respectively. Both the test and validation set con-
sist of 5000 images obtained by stratified random sampling.

4.2. Painting colourisation

In this section the results on the main image colourisa-
tion task in this work are described. All results are measured
using the micro-averaged root mean square error (RMSE)
across all pixels in ab space, and the macro-averaged peak
signal-to-noise ratio (PSNR) across images in RGB space.

Results of the comparison between the seven approaches
described in Section 4 in Table 1 show that our model
achieves the highest performance according to RMSE. On
this dataset all models score below the PSNR baseline, de-
spite our model achieving the highest performance of all
models. We suspect that the high PSNR for the baseline is
an artifact of the colourless images in the dataset, and the
calculation of this metric in RGB space. Nevertheless, we
pose that the metric remains useful to compare performance
between approaches.

3https://www.kaggle.com/c/painter-by-numbers

Table 1. Painting colourisation results measured using RMSE
across all pixels, and PSNR in RGB space. The goal is to have
a low RMSE, and a high PSNR. “Greyscale” is a baseline which
provides no colourisation.

Method RMSE PSNR
Greyscale 0.175 24.66
Trained on natural images
Larsson et al. [15] 0.168 22.18
Zhang et al. [28] 0.163 22.29
Fine-tuned on paintings
Zhang et al. [28] 0.175 21.65
Trained on paintings
Ours BN 0.146 23.26
Ours IN 0.149 23.31
Ours CIN 0.145 23.34
Ours Randomised CIN 0.164 22.31

Our model outperforms the baseline regardless of the
normalisation scheme, and it outperforms the two previ-
ous colourisation approaches (by Larsson et al. and Zhang
et al.) regardless of whether they were trained on natu-
ral images or fine-tuned on paintings. Nonetheless, there
are differences in performance between the normalisation
schemes. With CIN performing slightly better than IN and
BN, both in terms of RMSE and PSNR. Moreover, from
the comparison between CIN and randomised-CIN we can
learn that conditioning on the correct artist is important, in
that using a random artist results in a deteriorated perfor-
mance, which demonstrates that the CIN model learns to
colourise in an artist-specific manner.

For a qualitative comparison between our models we
show three sets of the colourisation results, the first set in
Figure 3 shows the best case performance, the second set
in Figure 4 the worst case, and the third set in Figure 5
the expected performance. These sets were created based
on the RMSE obtained by the best performing model (Ours
CIN). In Figure 3 we show the colour paintings in the best
case. The best performances were obtained for a few na-
tively greyscale paintings/drawings contained in the dataset.
These will be discussed separately. The presence of these
paintings/drawings is presumably also the cause for the high
PSNR for the greyscale baseline.

When comparing the colourisations in Figure 3 we can
observe that all three normalisation schemes produce plau-
sible colourisations, despite not always exactly matching
the ground truth. It appears that the IN and BN model pro-
duce colours which are more typical for the entire dataset,
whereas CIN produces colours which closer match the orig-
inal: a more saturated red in the first row, greys/silvers in-
stead of browns in the third row, and a yellow sky rather
than a blue sky in the last row. These results are in line with
what we would expect as differences between these models.

The cases for which we obtain the worst RMSE are those

https://www.kaggle.com/c/painter-by-numbers


Original Input Ours CIN Ours IN Ours BN

Figure 3. Example colourisation results on Painters by Numbers.
Colour images with lowest RMSE according to our CIN model.

Original Input Ours CIN Ours IN Ours BN

Figure 4. Example colourisation results on Painters by Numbers.
Shown examples have the highest RMSE according to our CIN
model.

shown in Figure 4. For these (abstract) artworks there ap-
pears to be little to no visual semantics that provide clues
about the colours used. The experimental use of colour by
abstract artists such as Mark Rothko (in the second row)
makes colourisation virtually impossible.

In order to see the expected performance of the CIN
model we present the images shown in Figure 5, which were
randomly sampled from around the median RMSE. These
images show that the colourisations for both CIN and IN
are very consistent with the original, although all models
predict the jacket in the artwork on the second row to be red
rather than blue. However, given that there is no indication
in the input which colour it should be, and either colour is
equally plausible we would consider this a good colourisa-

Original Input Ours CIN Ours IN Ours BN

Figure 5. Example colourisation results on Painters by Numbers.
Shown examples were randomly sampled from around the median
RMSE for our CIN model.

Original Input Ours CIN Ours IN Ours BN

Figure 6. Example colourisation results on Painters by Numbers.
Images with lowest RMSE according to our CIN model.

tion. The colourisations produced by BN are not far behind,
though they seem to be less spatially consistent.

In Figure 3 we showed the colour images for which the
CIN model obtained the lowest RMSE. As stated, the lowest
RMSE scores were obtained for the natively greyscale im-
ages shown in Figure 6. The best hallucination for natively
greyscale paintings and drawings, is reproduction of the in-
put input (with potentially a slight uniform hue change). It
appears all models are able to learn to generate a greyscale
reproduction, though with slight hue differences. In hind-
sight, we could have removed the natively colourless or
almost colourless artworks from the Painters by Numbers
dataset to make the colourisation task more consistent.

For qualitative comparison between our best performing
model (CIN) and the models by Larsson et al. [15] and
Zhang et al. [28] we show three images in Figure 7 for
which the absolute difference in RMSE between our CIN
model and the Larsson et al. [15] model is the largest.
From these images we can observe that this mainly concerns
abstract artworks for which a human observer would have
difficulty picking the most plausible colourisation. Fortu-
nately, our CIN model has artist-specific information, there-
fore it can produce a reasonable colour, despite the lack of



Original Input Ours CIN Larsson [15] Zhang [28]

Figure 7. Example colourisation results on Painters by Numbers.
Images where our CIN model outperforms [15] with the biggest
RMSE difference.

semantic information in the image.

4.3. Stylistic colour transfer

In the previous section we have shown that the perfor-
mances of normalisation schemes are very similar. For gen-
erative purposes, the CIN model has an additional advan-
tage in that we can choose in which colour style to ren-
der the artwork. As a result, we can transfer the colour
style of one artist onto an artwork of another artist. In this
section we perform a qualitative comparison of a number
of artworks on which we applied stylistic colour transfer.
As the sources for our colour transfer experiments, we se-
lected the colour styles of Maria Primachenko and Mark
Rothko, because of their prominent use of colour. Note that
this approach differs from what is commonly referred to as
colour transfer, in that we learn the style of an artist from
a database of images, rather than from a single reference
image [18].

The stylistic colour transfer visualisations can be found
in Figure 8. These columns (from left to right) show the
greyscale input to the model, the original artwork in colour,
a colourisation produced conditioned on the actual artist,
a colourisation conditioned on Maria Primachenko, and a
colourisation conditioned on Mark Rothko.

The first row shows an artwork by Roy Lichtenstein. The
colourisation conditioned on his colour style is not very
close to the original. Still, it does match the colour palette
of many of his other artworks. The colourisation condi-
tioned on Maria Primachenko is much more yellow, with
some purple highlights. The colourisation conditioned on
Mark Rothko is mainly in shades of red and orange. A sim-
ilar pattern can be observed in the next rows, for the colouri-
sations of an artwork by Marc Chagall, and one artwork by
Louisa Matthiasdottir.

For all artworks we can observe that the three colourisa-

tions differ strongly, illustrating the artist-specific effect of
the CIN model.

5. Discussion
The main aim of this paper was to determine if we can

create a colourisation model for paintings which can deal
with the inherent complexity of the task due to the influence
of both image semantics and the artist’s palette. Our results
indicate that automatic colourisation models can produce
plausible colourisations for paintings, and that performing
the colourisation in an artist-specific manner appears bene-
ficial. In what follows, we discuss (1) artist-specific colouri-
sation, (2) normalisation schemes, (3) the use of paint-
ings (rather than natural images) for training a colourisation
model, and (4) evaluation of painting colourisation models.

(1) Artist-specific colourisation. We aimed to learn a rep-
resentation of the artists colour usage such that we could do
artist-specific colourisation. We compared an approach to
do this explicitly (CIN) with two approaches which might
be able to do this implicitly (BN and IN). Our results show
that while the CIN approach can be used to explicitly al-
ter the colourisation, the IN (and to a lesser extent the BN)
approach appear to recognise the artist and use this as an in-
formation source for the colourisation. Therefore, we pose
that the minor difference in performance between CIN and
IN is due to the ability of the IN approach to recognise the
artist or the art style to a sufficient extent, such that it is not
necessary to explicitly pass this as a signal to the network.

(2) Normalisation Schemes. We found the difference in
performance between the normalisation schemes to be very
small. CIN offers some additional functionality in that we
can influence the colourisation, at the cost of extra (condi-
tional) parameters. Moreover, while in the work of [4] CIN
is used to achieve impressive style transfer results, we pose
that the representational power of the scale and shift param-
eters in CIN is insufficient to capture the full complexity of
an artist’s palette. Therefore, the main difference between
the normalisation schemes seem to come down to satura-
tion levels and small colour variations. Still, the benefits
of CIN are very clear and give a definite improvement in
performance for painting colourisation. It would be worth-
while to investigate whether this is the case as well for other
image colourisation tasks. This is left to future work.

(3) Use of paintings for training. It could be argued
that a painting specific colourisation model is not necessary,
as applying realistic colours learned from natural scenes
should be sufficient to produce satisfactory results. Our re-
sults indicate that the visual structure in paintings is dif-
ferent to such a large extent that image colourisation mod-
els trained on natural scenes only generalise to paintings
which are (hyper)realistic, and do not recognise the struc-
ture in more abstract paintings. Our results indicate that
fine-tuning such a network does not help to overcome this,



Figure 8. Stylistic colour transfer results. For three greyscale images we show the colourisation results of conditioning on the actual artist
(third column) on Maria Primachenko (fourth column), and on Mark Rothko (last column).

rather that it appears to worsen the results. Additionally,
besides differences in image structure for abstract paintings,
these paintings also tend to use a different palette than found
in nature, making it necessary to train a model specifically
for this task. Although the model itself could be a generi-
cally applicable model, such as the model presented in the
current paper.

(4) Evaluation of painting colourisation. A notable prob-
lem for image colourisation is how to do the evaluation.
While quantitative measures, such as the ones used in this
work, given an indication of the performance of the model,
they have a number of pitfalls. These pitfalls mainly con-
cern the bias of these measures to prefer greyscale over a
wrong colour, even when the saturation levels match the
ground truth (i.e., greyscale is preferred over blue when the
ground truth is green). To overcome this, a number of works
have employed user studies [28, 10], or external evaluation
by means of a classification task [28]. For painting colouri-
sation the former is hindered by the presence of abstract
paintings for which naive users have difficulty judging the
plausibility. The latter approach leads to incomparable re-
sults when applied to our work as our conditional model re-
ceives information about who the artist is, which might give
it an unfair advantage. How to accurately evaluate colouri-

sation models remains an open question.

6. Conclusion
In this work we proposed an image colourisation model

capable of producing colourisations of paintings specific to
the colour style of an artist. While the model’s performance
was demonstrated on paintings and artists, we pose that it is
a general approach which could be applied to a wide vari-
ety of image colourisation tasks, as none of the components
are specific to the painting domain. However, we pose that
for cultural heritage applications the conditional aspect is
most useful, as there is often a creative human component
which determines the image appearance. In conclusion, our
model is capable of producing plausible colourisations of
paintings, and is highly diverse when varying the artist on
which the colourisation is conditioned.
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